Proto‐Urea‐RNA (Wöhler RNA) Containing Unusually Stable Urea Nucleosides

  • Hidenori Okamura
    Center for Integrated Protein Science (CiPS<sup>M</sup>) at the Department of Chemistry LMU München Butenandtstr. 5–13 81377 München Germany
  • Antony Crisp
    Center for Integrated Protein Science (CiPS<sup>M</sup>) at the Department of Chemistry LMU München Butenandtstr. 5–13 81377 München Germany
  • Sarah Hübner
    Center for Integrated Protein Science (CiPS<sup>M</sup>) at the Department of Chemistry LMU München Butenandtstr. 5–13 81377 München Germany
  • Sidney Becker
    Center for Integrated Protein Science (CiPS<sup>M</sup>) at the Department of Chemistry LMU München Butenandtstr. 5–13 81377 München Germany
  • Petra Rovó
    Center for Integrated Protein Science (CiPS<sup>M</sup>) at the Department of Chemistry LMU München Butenandtstr. 5–13 81377 München Germany
  • Thomas Carell
    Center for Integrated Protein Science (CiPS<sup>M</sup>) at the Department of Chemistry LMU München Butenandtstr. 5–13 81377 München Germany

Abstract

<jats:title>Abstract</jats:title><jats:p>The RNA world hypothesis assumes that life on Earth began with nucleotides that formed information‐carrying RNA oligomers able to self‐replicate. Prebiotic reactions leading to the contemporary nucleosides are now known, but their execution often requires specific starting materials and lengthy reaction sequences. It was therefore proposed that the RNA world was likely proceeded by a proto‐RNA world constructed from molecules that were likely present on the early Earth in greater abundance. Herein, we show that the prebiotic starting molecules bis‐urea (biuret) and tris‐urea (triuret) are able to directly react with ribose. The urea‐ribosides are remarkably stable because they are held together by a network of intramolecular, bifurcated hydrogen bonds. This even allowed the synthesis of phosphoramidite building blocks and incorporation of the units into RNA. Investigations of the nucleotides’ base‐pairing potential showed that triuret:G RNA base pairs closely resemble U:G wobble base pairs. Based on the probable abundance of urea on the early Earth, we postulate that urea‐containing RNA bases are good candidates for a proto‐RNA world.</jats:p>

Journal

Citations (1)*help

See more

Report a problem

Back to top