Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior High‐Rate and Low‐Temperature Zinc‐Ion Batteries

  • Hongbo Geng
    School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
  • Min Cheng
    School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
  • Bo Wang
    School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
  • Yang Yang
    School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
  • Yufei Zhang
    School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China
  • Cheng Chao Li
    School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China

抄録

<jats:title>Abstract</jats:title><jats:p>Currently, development of suitable cathode materials for zinc‐ion batteries (ZIBs) is plagued by the sluggish kinetics of Zn<jats:sup>2+</jats:sup> with multivalent charge in the host structure. Herein, it is demonstrated that interlayer Mn<jats:sup>2+</jats:sup>‐doped layered vanadium oxide (Mn<jats:sub>0.15</jats:sub>V<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub>·<jats:italic>n</jats:italic>H<jats:sub>2</jats:sub>O) composites with narrowed direct bandgap manifest greatly boosted electrochemical performance as zinc‐ion battery cathodes. Specifically, the Mn<jats:sub>0.15</jats:sub>V<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub>·<jats:italic>n</jats:italic>H<jats:sub>2</jats:sub>O electrode shows a high specific capacity of 367 mAh g<jats:sup>−1</jats:sup> at a current density of 0.1 A g<jats:sup>−1</jats:sup> as well as excellent retentive capacities of 153 and 122 mAh g<jats:sup>−1</jats:sup> after 8000 cycles at high current densities up to 10 and 20 A g<jats:sup>−1</jats:sup>, respectively. Even at a low temperature of −20 °C, a reversible specific capacity of 100 mAh g<jats:sup>−1</jats:sup> can be achieved at a current density of 2.0 A g<jats:sup>−1</jats:sup> after 3000 cycles. The superior electrochemical performance originates from the synergistic effects between the layered nanostructures and interlayer doping of Mn<jats:sup>2+</jats:sup> ions and water molecules, which can enhance the electrons/ions transport kinetics and structural stability during cycling. With the aid of various ex situ characterization technologies and density functional theory calculations, the zinc‐ion storage mechanism can be revealed, which provides fundamental guidelines for developing high‐performance cathodes for ZIBs.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

問題の指摘

ページトップへ