Making Radiomics More Reproducible across Scanner and Imaging Protocol Variations: A Review of Harmonization Methods
-
- Shruti Atul Mali
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
-
- Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
-
- Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
-
- Vincent Andrearczyk
- Institute of Information Systems, University of Applied Sciences and Arts Western Switzerland (HES-SO), rue du Technopole 3, 3960 Sierre, Switzerland
-
- Henning Müller
- Institute of Information Systems, University of Applied Sciences and Arts Western Switzerland (HES-SO), rue du Technopole 3, 3960 Sierre, Switzerland
-
- Sergey Primakov
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
-
- Zohaib Salahuddin
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
-
- Avishek Chatterjee
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
-
- Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
説明
<jats:p>Radiomics converts medical images into mineable data via a high-throughput extraction of quantitative features used for clinical decision support. However, these radiomic features are susceptible to variation across scanners, acquisition protocols, and reconstruction settings. Various investigations have assessed the reproducibility and validation of radiomic features across these discrepancies. In this narrative review, we combine systematic keyword searches with prior domain knowledge to discuss various harmonization solutions to make the radiomic features more reproducible across various scanners and protocol settings. Different harmonization solutions are discussed and divided into two main categories: image domain and feature domain. The image domain category comprises methods such as the standardization of image acquisition, post-processing of raw sensor-level image data, data augmentation techniques, and style transfer. The feature domain category consists of methods such as the identification of reproducible features and normalization techniques such as statistical normalization, intensity harmonization, ComBat and its derivatives, and normalization using deep learning. We also reflect upon the importance of deep learning solutions for addressing variability across multi-centric radiomic studies especially using generative adversarial networks (GANs), neural style transfer (NST) techniques, or a combination of both. We cover a broader range of methods especially GANs and NST methods in more detail than previous reviews.</jats:p>
収録刊行物
-
- Journal of Personalized Medicine
-
Journal of Personalized Medicine 11 (9), 842-, 2021-08-27
MDPI AG