VANISHING OF (CO)HOMOLOGY OVER DEFORMATIONS OF COHEN-MACAULAY LOCAL RINGS OF MINIMAL MULTIPLICITY

説明

<jats:title>Abstract</jats:title><jats:p>Let <jats:italic>R</jats:italic> be a <jats:italic>d</jats:italic>-dimensional Cohen–Macaulay (CM) local ring of minimal multiplicity. Set <jats:italic>S</jats:italic> := <jats:italic>R</jats:italic>/(<jats:bold>f</jats:bold>), where <jats:bold>f</jats:bold> := <jats:italic>f</jats:italic><jats:sub>1</jats:sub>,. . .,<jats:italic>f<jats:sub>c</jats:sub></jats:italic> is an <jats:italic>R</jats:italic>-regular sequence. Suppose <jats:italic>M</jats:italic> and <jats:italic>N</jats:italic> are maximal CM <jats:italic>S</jats:italic>-modules. It is shown that if Ext<jats:italic><jats:sub>S</jats:sub><jats:sup>i</jats:sup></jats:italic>(<jats:italic>M</jats:italic>, <jats:italic>N</jats:italic>) = 0 for some (<jats:italic>d</jats:italic> + <jats:italic>c</jats:italic> + 1) consecutive values of <jats:italic>i</jats:italic> ⩾ 2, then Ext<jats:italic><jats:sub>S</jats:sub><jats:sup>i</jats:sup></jats:italic>(<jats:italic>M</jats:italic>, <jats:italic>N</jats:italic>) = 0 for all <jats:italic>i</jats:italic> ⩾ 1. Moreover, if this holds true, then either projdim<jats:sub><jats:italic>R</jats:italic></jats:sub>(<jats:italic>M</jats:italic>) or injdim<jats:sub><jats:italic>R</jats:italic></jats:sub>(<jats:italic>N</jats:italic>) is finite. In addition, a counterpart of this result for Tor-modules is provided. Furthermore, we give a number of necessary and sufficient conditions for a CM local ring of minimal multiplicity to be regular or Gorenstein. These conditions are based on vanishing of certain Exts or Tors involving homomorphic images of syzygy modules of the residue field.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

キーワード

詳細情報 詳細情報について

問題の指摘

ページトップへ