Radical Reactivity of the Biradical [⋅P(μ‐NTer)<sub>2</sub>P⋅] and Isolation of a Persistent Phosphorus‐Cantered Monoradical [⋅P(μ‐NTer)<sub>2</sub>P‐Et]

  • Jan Rosenboom
    Institut für Chemie, Universität Albert-Einstein-Straße 3a 18059 Rostock Germany
  • Lukas Chojetzki
    Institut für Chemie, Universität Albert-Einstein-Straße 3a 18059 Rostock Germany
  • Tim Suhrbier
    Institut für Chemie, Universität Albert-Einstein-Straße 3a 18059 Rostock Germany
  • Jabor Rabeah
    Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
  • Alexander Villinger
    Institut für Chemie, Universität Albert-Einstein-Straße 3a 18059 Rostock Germany
  • Ronald Wustrack
    Institut für Chemie, Universität Albert-Einstein-Straße 3a 18059 Rostock Germany
  • Jonas Bresien
    Institut für Chemie, Universität Albert-Einstein-Straße 3a 18059 Rostock Germany
  • Axel Schulz
    Institut für Chemie, Universität Albert-Einstein-Straße 3a 18059 Rostock Germany

抄録

<jats:title>Abstract</jats:title><jats:p>The activation of C−Br bonds in various bromoalkanes by the biradical [⋅P(μ‐NTer)<jats:sub>2</jats:sub>P⋅] (<jats:bold>1</jats:bold>) (Ter=2,6‐bis‐(2,4,6‐trimethylphenyl)‐phenyl) is reported, yielding <jats:italic>trans</jats:italic>‐addition products of the type [Br−P(μ‐NTer)<jats:sub>2</jats:sub>P−R] (<jats:bold>2</jats:bold>), so‐called 1,3‐substituted <jats:italic>cyclo</jats:italic>‐1,3‐diphospha‐2,4‐diazanes. This addition reaction, which represents a new easy approach to asymmetrically substituted <jats:italic>cyclo</jats:italic>‐1,3‐diphospha‐2,4‐diazanes, was investigated mechanistically by different spectroscopic methods (NMR, EPR, IR, Raman); the results suggested a stepwise radical reaction mechanism, as evidenced by the in‐situ detection of the phosphorus‐centered monoradical [⋅P(μ‐NTer)<jats:sub>2</jats:sub>P‐R].< To provide further evidence for the radical mechanism, [⋅P(μ‐NTer)<jats:sub>2</jats:sub>P‐Et] (<jats:bold>3Et</jats:bold>⋅) was synthesized directly by reduction of the bromoethane addition product [Br‐P(μ‐NTer)<jats:sub>2</jats:sub>P‐Et] (<jats:bold>2</jats:bold> <jats:bold>a</jats:bold>) with magnesium, resulting in the formation of the persistent phosphorus‐centered monoradical [⋅P(μ‐NTer)<jats:sub>2</jats:sub>P‐Et], which could be isolated and fully characterized, including single‐crystal X‐ray diffraction. Comparison of the EPR spectrum of the radical intermediate in the addition reaction with that of the synthesized new [⋅P(μ‐NTer)<jats:sub>2</jats:sub>P‐Et] radical clearly proves the existence of radicals over the course of the reaction of biradical [⋅P(μ‐NTer)<jats:sub>2</jats:sub>P⋅] (<jats:bold>1</jats:bold>) with bromoethane. Extensive DFT and coupled cluster calculations corroborate the experimental data for a radical mechanism in the reaction of biradical [⋅P(μ‐NTer)<jats:sub>2</jats:sub>P⋅] with EtBr. In the field of hetero‐cyclobutane‐1,3‐diyls, the demonstration of a stepwise radical reaction represents a new aspect and closes the gap between P‐centered biradicals and P‐centered monoradicals in terms of radical reactivity.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

問題の指摘

ページトップへ