Normal systemic iron homeostasis in mice with macrophage-specific deletion of transferrin receptor 2

  • Gautam Rishi
    Membrane Transport Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; and
  • Eriza S. Secondes
    Membrane Transport Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; and
  • Daniel F. Wallace
    Membrane Transport Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; and
  • V. Nathan Subramaniam
    Membrane Transport Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; and

抄録

<jats:p> Iron is an essential element, since it is a component of many macromolecules involved in diverse physiological and cellular functions, including oxygen transport, cellular growth, and metabolism. Systemic iron homeostasis is predominantly regulated by the liver through the iron regulatory hormone hepcidin. Hepcidin expression is itself regulated by a number of proteins, including transferrin receptor 2 (TFR2). TFR2 has been shown to be expressed in the liver, bone marrow, macrophages, and peripheral blood mononuclear cells. Studies from our laboratory have shown that mice with a hepatocyte-specific deletion of Tfr2 recapitulate the hemochromatosis phenotype of the global Tfr2 knockout mice, suggesting that the hepatic expression of TFR2 is important in systemic iron homeostasis. It is unclear how TFR2 in macrophages contributes to the regulation of iron metabolism. We examined the role of TFR2 in macrophages by analysis of transgenic mice lacking Tfr2 in macrophages by crossing Tfr2<jats:sup> f/f</jats:sup> mice with LysM-Cre mice. Mice were fed an iron-rich diet or injected with lipopolysaccharide to examine the role of macrophage Tfr2 in iron- or inflammation-mediated regulation of hepcidin. Body iron homeostasis was unaffected in the knockout mice, suggesting that macrophage TFR2 is not required for the regulation of systemic iron metabolism. However, peritoneal macrophages of knockout mice had significantly lower levels of ferroportin mRNA and protein, suggesting that TFR2 may be involved in regulating ferroportin levels in macrophages. These studies further elucidate the role of TFR2 in the regulation of iron homeostasis and its role in regulation of ferroportin and thus macrophage iron homeostasis. </jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ