- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Measuring the propagation speed of gravitational waves with LISA
Description
<jats:title>Abstract</jats:title> <jats:p>The propagation speed of gravitational waves, <jats:italic>c<jats:sub>T</jats:sub> </jats:italic>, has been tightly constrained by the binary neutron star merger GW170817 and its electromagnetic counterpart, under the assumption of a frequency-independent <jats:italic>c<jats:sub>T</jats:sub> </jats:italic>. Drawing upon arguments from Effective Field Theory and quantum gravity, we discuss the possibility that modifications of General Relativity allow for transient deviations of <jats:italic>c<jats:sub>T</jats:sub> </jats:italic> from the speed of light at frequencies well below the band of current ground-based detectors. We motivate two representative Ansätze for <jats:italic>c<jats:sub>T</jats:sub> </jats:italic>(<jats:italic>f</jats:italic>), and study their impact upon the gravitational waveforms of massive black hole binary mergers detectable by the LISA mission. We forecast the constraints on <jats:italic>c<jats:sub>T</jats:sub> </jats:italic>(<jats:italic>f</jats:italic>) obtainable from individual systems and a population of sources, from both inspiral and a full inspiral-merger-ringdown waveform. We show that LISA will enable us to place stringent independent bounds on departures from General Relativity in unexplored low-frequency regimes, even in the absence of an electromagnetic counterpart.</jats:p>
Journal
-
- Journal of Cosmology and Astroparticle Physics
-
Journal of Cosmology and Astroparticle Physics 2022 (08), 031-, 2022-08-01
IOP Publishing
- Tweet
Details 詳細情報について
-
- CRID
- 1360021393306371072
-
- ISSN
- 14757516
-
- Data Source
-
- Crossref