Impact of the Solid Electrolyte Particle Size Distribution in Sulfide‐Based Solid‐State Battery Composites

  • Eva Schlautmann
    Institute of Inorganic and Analytical Chemistry University of Münster Corrensstrasse 28/30 48149 Münster Germany
  • Alexander Weiß
    Center for Materials Research Justus Liebig University Heinrich‐Buff‐Ring 17 35392 Giessen Germany
  • Oliver Maus
    Institute of Inorganic and Analytical Chemistry University of Münster Corrensstrasse 28/30 48149 Münster Germany
  • Lukas Ketter
    Institute of Inorganic and Analytical Chemistry University of Münster Corrensstrasse 28/30 48149 Münster Germany
  • Moumita Rana
    Institute of Inorganic and Analytical Chemistry University of Münster Corrensstrasse 28/30 48149 Münster Germany
  • Sebastian Puls
    Institut für Energie‐ und Klimaforschung IEK‐12: Helmholtz‐Institut Münster Forschungszentrum Jülich Corrensstrasse 46 48149 Münster Germany
  • Vera Nickel
    AMG Lithium GmbH Industriepark Höchst, Building B852 65926 Frankfurt am Main Germany
  • Christine Gabbey
    AMG Lithium GmbH Industriepark Höchst, Building B852 65926 Frankfurt am Main Germany
  • Christoph Hartnig
    AMG Lithium GmbH Industriepark Höchst, Building B852 65926 Frankfurt am Main Germany
  • Anja Bielefeld
    Center for Materials Research Justus Liebig University Heinrich‐Buff‐Ring 17 35392 Giessen Germany
  • Wolfgang G. Zeier
    Institute of Inorganic and Analytical Chemistry University of Münster Corrensstrasse 28/30 48149 Münster Germany

Search this article

Description

<jats:title>Abstract</jats:title><jats:p>All solid‐state batteries are promising, as they are expected to offer increased energy density over conventional lithium‐ion batteries. Here, the microstructure of solid composite electrodes plays a crucial role in determining the characteristics of ionic and electronic pathways. Microstructural aspects that impede charge carrier transport can, for instance, be voids resulting from a general mismatch of particle sizes. Solid electrolyte materials with smaller particle size distribution represent a promising approach to limit the formation of voids and to match the smaller active materials. Therefore, a systematic investigation on the influence of the solid electrolyte particle size on the microstructural properties, charge carrier transport, and rate performance is essential. This study provides an understanding of the influence of the particle sizes of Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl on the charge carrier transport properties and their effect on the performance of solid‐state batteries. In conclusion, smaller Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl particles optimize the charge transport properties and offer a higher interface area with the active material, resulting in improved solid‐state battery performance.</jats:p>

Journal

Citations (1)*help

See more

Details 詳細情報について

Report a problem

Back to top