Post‐stroke depression: mechanisms, translation and therapy

  • Isabelle Loubinoux
    INSERM Cerebral imaging and neurological handicaps UMR825 Toulouse France
  • Golo Kronenberg
    Klinik und Poliklinik für Neurologie and Center for Stroke Research Berlin Germany
  • Matthias Endres
    Klinik und Poliklinik für Neurologie and Center for Stroke Research Berlin Germany
  • Pascale Schumann‐Bard
    University of Caen Basse‐Normandie UFR Pharmaceutical Sciences Groupe Mémoire et Plasticité comportementale Caen France
  • Thomas Freret
    University of Caen Basse‐Normandie UFR Pharmaceutical Sciences Groupe Mémoire et Plasticité comportementale Caen France
  • Robert K. Filipkowski
    Department of Biological Psychology University of Finance and Management Warsaw Poland
  • Leszek Kaczmarek
    Nencki Institute Warsaw Poland
  • Aurel Popa‐Wagner
    Clinic of Neurology Department of Experimental Neurology Medical Faculty Greifswald Germany

説明

<jats:title>Abstract</jats:title><jats:p>The interaction between depression and stroke is highly complex. Post‐stroke depression (<jats:styled-content style="fixed-case">PSD</jats:styled-content>) is among the most frequent neuropsychiatric consequences of stroke. Depression also negatively impacts stroke outcome with increased morbidity, mortality and poorer functional recovery. Antidepressants such as the commonly prescribed selective serotonin reuptake inhibitors improve stroke outcome, an effect that may extend far beyond depression, <jats:italic>e.g</jats:italic>., to motor recovery. The main biological theory of <jats:styled-content style="fixed-case">PSD</jats:styled-content> is the amine hypothesis. Conceivably, ischaemic lesions interrupt the projections ascending from midbrain and brainstem, leading to a decreased bioavailability of the biogenic amines – serotonin (5<jats:styled-content style="fixed-case">HT</jats:styled-content>), dopamine (<jats:styled-content style="fixed-case">DA</jats:styled-content>) and norepinephrine (<jats:styled-content style="fixed-case">NE</jats:styled-content>). Acetylcholine would also be involved. So far, preclinical and translational research on <jats:styled-content style="fixed-case">PSD</jats:styled-content> is largely lacking. The implementation and characterization of suitable animal models is clearly a major prerequisite for deeper insights into the biological basis of post‐stroke mood disturbances. Equally importantly, experimental models may also pave the way for the discovery of novel therapeutic targets. If we cannot prevent stroke, we shall try to limit its long‐term consequences. This review therefore presents animal models of <jats:styled-content style="fixed-case">PSD</jats:styled-content> and summarizes potential underlying mechanisms including genomic signatures, neurotransmitter and neurotrophin signalling, hippocampal neurogenesis, cellular plasticity in the ischaemic lesion, secondary degenerative changes, activation of the hypothalamo‐pituitary‐adrenal (<jats:styled-content style="fixed-case">HPA</jats:styled-content>) axis and neuroinflammation. As stroke is a disease of the elderly, great clinical benefit may especially accrue from deciphering and targeting basic mechanisms underlying <jats:styled-content style="fixed-case">PSD</jats:styled-content> in aged animals.</jats:p>

収録刊行物

被引用文献 (8)*注記

もっと見る

問題の指摘

ページトップへ