Behavioral Choice between Conflicting Alternatives Is Regulated by a Receptor Guanylyl Cyclase, GCY-28, and a Receptor Tyrosine Kinase, SCD-2, in AIA Interneurons of<i>Caenorhabditis elegans</i>

抄録

<jats:p>Animals facing conflicting sensory cues make a behavioral choice between competing alternatives through integration of the sensory cues. Here, we performed a genetic screen to identify genes important for the sensory integration of two conflicting cues, the attractive odorant diacetyl and the aversive stimulus Cu<jats:sup>2+</jats:sup>, and found that the membrane-bound guanylyl cyclase GCY-28 and the receptor tyrosine kinase SCD-2 regulate the behavioral choice between these alternatives in<jats:italic>Caenorhabditis elegans</jats:italic>. The<jats:italic>gcy-28</jats:italic>mutants and<jats:italic>scd-2</jats:italic>mutants show an abnormal bias in the behavioral choice between the cues, although their responses to each individual cue are similar to those in wild-type animals. Mutants in a gene encoding a cyclic nucleotide gated ion channel,<jats:italic>cng-1</jats:italic>, also exhibit the defect in sensory integration. Molecular genetic analyses suggested that GCY-28 and SCD-2 regulate sensory integration in AIA interneurons, where the conflicting sensory cues may converge. Genetic ablation or hyperpolarization of AIA interneurons showed nearly the same phenotype as<jats:italic>gcy-28</jats:italic>or<jats:italic>scd-2</jats:italic>mutants in the sensory integration, although this did not affect the sensory response to each individual cue. In<jats:italic>gcy-28</jats:italic>or<jats:italic>scd-2</jats:italic>mutants, activation of AIA interneurons is sufficient to restore normal sensory integration. These results suggest that the activity of AIA interneurons regulates the behavioral choice between the alternatives. We propose that GCY-28 and SCD-2 regulate sensory integration by modulating the activity of AIA interneurons.</jats:p>

収録刊行物

被引用文献 (14)*注記

もっと見る

参考文献 (59)*注記

もっと見る

関連プロジェクト

もっと見る

キーワード

詳細情報 詳細情報について

問題の指摘

ページトップへ