Fast online low-rank tensor subspace tracking by CP decomposition using recursive least squares from incomplete observations

Search this article

Description

We consider the problem of online subspace tracking of a partially observed high-dimensional data stream corrupted by noise, where we assume that the data lie in a low-dimensional linear subspace. This problem is cast as an online low-rank tensor completion problem. We propose a novel online tensor subspace tracking algorithm based on the CANDECOMP/PARAFAC (CP) decomposition, dubbed OnLine Low-rank Subspace tracking by TEnsor CP Decomposition (OLSTEC). The proposed algorithm especially addresses the case in which the subspace of interest is dynamically time-varying. To this end, we build up our proposed algorithm exploiting the recursive least squares (RLS), which is the second-order gradient algorithm. Numerical evaluations on synthetic datasets and real-world datasets such as communication network traffic, environmental data, and surveillance videos, show that the proposed OLSTEC algorithm outperforms state-of-the-art online algorithms in terms of the convergence rate per iteration.

Extended version of arXiv:1602.07067 (IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2016))

Journal

References(41)*help

See more

Related Projects

See more

Report a problem

Back to top