Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers

説明

<jats:title>Abstract</jats:title><jats:p>Femtosecond semiconductor lasers are ideal devices to provide the ultrashort pulses for industrial and biomedical use because of their robustness, stability, compactness and potential low cost. In particular, gain-switched semiconductor lasers have significant advantages of flexible pulse shaping and repetition rate with the robustness. Here we first demonstrate our laser, which is initiated by very strong pumping of 100 times the lasing threshold density, can surpass the photon lifetime limit that has restricted the pulse width to picoseconds for the past four decades and produce an unprecedented ultrashort pulse of 670 fs with a peak power of 7.5 W on autocorrelation measurement. The measured phenomena are reproduced effectively by our numerical calculation based on rate equations including the non-equilibrium intraband carrier distribution, which reveal that the pulse width is limited by the carrier–carrier scattering time, instead of the photon lifetime.</jats:p>

収録刊行物

被引用文献 (5)*注記

もっと見る

参考文献 (39)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ