- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Langlands correspondence for isocrystals and the existence of crystalline companions for curves
Search this article
Description
<p>In this paper, we show the Langlands correspondence for isocrystals on curves, which asserts the existence of crystalline companions in the case of curves. For the proof we generalize the theory of arithmetic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="script">D</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathscr {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules to algebraic stacks whose diagonal morphisms are finite. Finally, combining with methods of Deligne and Drinfeld, we show the existence of an “<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script l"> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding="application/x-tex">\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic companion” for any isocrystal on a smooth scheme of any dimension under the assumption of a Bertini-type conjecture.</p>
Journal
-
- Journal of the American Mathematical Society
-
Journal of the American Mathematical Society 31 (4), 921-1057, 2018-05-22
American Mathematical Society (AMS)
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1360285709464508160
-
- ISSN
- 10886834
- 08940347
- http://id.crossref.org/issn/08940347
-
- Article Type
- journal article
-
- Data Source
-
- Crossref
- KAKEN
- OpenAIRE