- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
High-throughput combinatorial screening of multi-component electrolyte additives to improve the performance of Li metal secondary batteries
Description
<jats:title>Abstract</jats:title><jats:p>Data-driven material discovery has recently become popular in the field of next-generation secondary batteries. However, it is important to obtain large, high quality data sets to apply data-driven methods such as evolutionary algorithms or Bayesian optimization. Combinatorial high-throughput techniques are an effective approach to obtaining large data sets together with reliable quality. In the present study, we developed a combinatorial high-throughput system (HTS) with a throughput of 400 samples/day. The aim was to identify suitable combinations of additives to improve the performance of lithium metal electrodes for use in lithium batteries. Based on the high-throughput screening of 2002 samples, a specific combination of five additives was selected that drastically improved the coulombic efficiency (CE) of a lithium metal electrode. Importantly, the CE was remarkably decreased merely by removing one of these components, highlighting the synergistic basis of this mixture. The results of this study show that the HTS presented herein is a viable means of accelerating the discovery of ideal yet complex electrolytes with multiple components that are very difficult to identify via conventional bottom-up approach.</jats:p>
Journal
-
- Scientific Reports
-
Scientific Reports 9 (1), 1-, 2019-04-17
Springer Science and Business Media LLC