Attention Decorrelates Sensory and Motor Signals in the Mouse Visual Cortex

DOI Web Site 参考文献46件 オープンアクセス

説明

<jats:title>Summary</jats:title><jats:p>Visually-guided behaviors depend on the activity of cortical networks receiving visual inputs and transforming these signals to guide appropriate actions. However, non-retinal inputs, carrying motor signals as well as cognitive and attentional modulatory signals, also activate these cortical regions. How these networks avoid interference between coincident signals ensuring reliable visual behaviors is poorly understood. Here, we observed neural responses in the dorsal-parietal cortex of mice during a visual discrimination task driven by visual stimuli and movements. We found that visual and motor signals interacted according to two canonical mechanisms: divisive normalization and response demixing. Interactions were contextually modulated by the animal’s state of attention, with attention amplifying visual and motor signals and decorrelating them in a low-dimensional space of neural activations. These findings reveal canonical computational principles operating in dorsal-parietal networks that enable separation of incoming signals for reliable visually-guided behaviors during interactions with the environment.</jats:p>

参考文献 (46)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ