Long-period ground motion simulation using centroid moment tensor inversion solutions based on the regional three-dimensional model in the Kanto region, Japan
Description
<jats:title>Abstract</jats:title><jats:p>We conducted centroid moment tensor (CMT) inversions of moderate (<jats:italic>Mw</jats:italic>4.5–6.5) earthquakes in the Kanto region, Japan, using a local three-dimensional (3D) model. We then investigated the effects of our 3D CMT solutions on long-period ground motion simulations. Grid search CMT inversions were conducted using displacement seismograms for periods of 25–100 s. By comparing our 3D CMT solutions with those from the local one-dimensional (1D) catalog, we found that our 3D CMT inversion systematically provides magnitudes smaller than those in the 1D catalog. The<jats:italic>Mw</jats:italic>differences between 3D and 1D catalogs tend to be significant for earthquakes within the oceanic slab. By comparing ground motion simulations between 1D and 3D velocity models, we confirmed that observed<jats:italic>Mw</jats:italic>differences could be explained by differences in the rigidity structures around the source regions between 3D and 1D velocity models. The 3D velocity structures (especially oceanic crust and mantle) are important for estimating seismic moments in intraslab earthquakes, which are related to fault size estimation. A detailed discussion for intraslab seismicity can be conducted using the 3D CMT catalog. The seismic moments also directly affect the amplitudes of ground motions. The 3D CMT catalog allows us to directly conduct the precise forward and inverse modeling of long-period ground motion without adjusting source models, which have been typically applied in the cases using the 1D CMT catalog. We also conducted long-period ground motion simulations using our 3D CMT solutions to evaluate the reproducibility of long-period ground motions at stations within the Kanto Basin. The simulations of our 3D CMT solutions well-reproduced observed ground motions for periods longer than 10 s, even at stations within the Kanto Basin. The reproducibility of simulations was improved from those using solutions in the 1D catalog.</jats:p>
Journal
-
- Earth, Planets and Space
-
Earth, Planets and Space 73 (1), 1-, 2021-01-11
Springer Science and Business Media LLC
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1360290617850297216
-
- ISSN
- 18805981
-
- Data Source
-
- Crossref
- KAKEN