Transfer function analysis of dynamic cerebral autoregulation in humans

  • Rong Zhang
    Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas 75231; and The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235
  • Julie H. Zuckerman
    Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas 75231; and The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235
  • Cole A. Giller
    Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas 75231; and The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235
  • Benjamin D. Levine
    Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas 75231; and The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235

説明

<jats:p> To test the hypothesis that spontaneous changes in cerebral blood flow are primarily induced by changes in arterial pressure and that cerebral autoregulation is a frequency-dependent phenomenon, we measured mean arterial pressure in the finger and mean blood flow velocity in the middle cerebral artery (V˙<jats:sub>MCA</jats:sub>) during supine rest and acute hypotension induced by thigh cuff deflation in 10 healthy subjects. Transfer function gain, phase, and coherence function between changes in arterial pressure andV˙<jats:sub>MCA</jats:sub> were estimated using the Welch method. The impulse response function, calculated as the inverse Fourier transform of this transfer function, enabled the calculation of transient changes inV˙<jats:sub>MCA</jats:sub> during acute hypotension, which was compared with the directly measured change in V˙<jats:sub>MCA</jats:sub> during thigh cuff deflation. Beat-to-beat changes inV˙<jats:sub>MCA</jats:sub> occurred simultaneously with changes in arterial pressure, and the autospectrum of V˙<jats:sub>MCA</jats:sub> showed characteristics similar to arterial pressure. Transfer gain increased substantially with increasing frequency from 0.07 to 0.20 Hz in association with a gradual decrease in phase. The coherence function was >0.5 in the frequency range of 0.07–0.30 Hz and <0.5 at <0.07 Hz. Furthermore, the predicted change inV˙<jats:sub>MCA</jats:sub> was similar to the measuredV˙<jats:sub>MCA</jats:sub> during thigh cuff deflation. These data suggest that spontaneous changes inV˙<jats:sub>MCA</jats:sub> that occur at the frequency range of 0.07–0.30 Hz are related strongly to changes in arterial pressure and, furthermore, that short-term regulation of cerebral blood flow in response to changes in arterial pressure can be modeled by a transfer function with the quality of a high-pass filter in the frequency range of 0.07–0.30 Hz. </jats:p>

収録刊行物

被引用文献 (20)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ