- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity
Description
<jats:title>Abstract</jats:title><jats:p>We show that if a homeomorphism <jats:italic>f</jats:italic> of the torus, isotopic to the identity, has three or more periodic orbits with non-collinear rotation vectors, then it has positive topological entropy. Furthermore, for each point ρ of the convex hull Δ of their rotation vectors, there is an orbit of rotation vector ρ, for each rational point <jats:italic>p</jats:italic>/<jats:italic>q</jats:italic>, <jats:italic>p</jats:italic> ∈ ℤ<jats:sup>2</jats:sup>, <jats:italic>q</jats:italic> ∈ ℕ, in the interior of Δ, there is a periodic orbit of rotation vector <jats:italic>p</jats:italic> / <jats:italic>q</jats:italic>, and for every compact connected subset <jats:italic>C</jats:italic> of Δ there is an orbit whose rotation set is <jats:italic>C</jats:italic>. Finally, we prove that <jats:italic>f</jats:italic> has ‘toroidal chaos’.</jats:p>
Journal
-
- Ergodic Theory and Dynamical Systems
-
Ergodic Theory and Dynamical Systems 11 (1), 115-128, 1991-03
Cambridge University Press (CUP)
- Tweet
Details 詳細情報について
-
- CRID
- 1360292618987919488
-
- ISSN
- 14694417
- 01433857
-
- Data Source
-
- Crossref