Metalloprotease‐induced ectodomain shedding of neural cell adhesion molecule (NCAM)

説明

<jats:title>Abstract</jats:title><jats:p>Transmembrane forms of neural cell adhesion molecule (NCAM140, NCAM180<jats:sup>1</jats:sup>) are key regulators of neuronal development. The extracellular domain of NCAM can occur as a soluble protein in normal brain, and its levels are elevated in neuropsychiatric disorders, such as schizophrenia; however the mechanism of ectodomain release is obscure. Ectodomain shedding of NCAM140, releasing a fragment of 115 kD, was found to be induced in NCAM‐transfected L‐fibroblasts by the tyrosine phosphatase inhibitor pervanadate, but not phorbol esters. Pervanadate‐induced shedding was mediated by a disintegrin metalloprotease (ADAM), regulated by ERK1/2 MAP kinase. In primary cortical neurons, NCAM was shed at high levels, and the metalloprotease inhibitor GM6001 significantly increased NCAM‐dependent neurite branching and outgrowth. Moreover, NCAM‐dependent neurite outgrowth and branching were inhibited in neurons isolated from a transgenic mouse model of NCAM shedding. These results suggest that regulated metalloprotease‐induced ectodomain shedding of NCAM down‐regulates neurite branching and neurite outgrowth. Thus, increased levels of soluble NCAM in schizophrenic brain have the potential to impair neuronal connectivity. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006</jats:p>

収録刊行物

被引用文献 (6)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ