Nanogranular origin of concrete creep

  • Matthieu Vandamme
    Université Paris-Est, Ecole des Ponts ParisTech–UR Navier, 6-8 avenue Blaise Pascal, 77420 Champs-sur-Marne, France; and
  • Franz-Josef Ulm
    Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139

説明

<jats:p> Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/ <jats:italic>t</jats:italic> ) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. </jats:p>

収録刊行物

被引用文献 (9)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ