GRANDMA observations of advanced LIGO’s and advanced Virgo’s third observational campaign

  • S Antier
    CNRS, Astroparticule et Cosmologie , Université de Paris, F-75013 Paris, France
  • S Agayeva
    N. Tusi Shamakhy Astrophysical Observatory Azerbaijan National Academy of Sciences, settl.Mamedaliyev, AZ 5626, Shamakhy, Azerbaijan
  • M Almualla
    Physics Department , American University of Sharjah, P.O. Box 26666, Sharjah, UAE
  • S Awiphan
    National Astronomical Research Institute of Thailand, 260, Moo 4, T. Donkaew, A. Mae Rim, Chiang Mai 50180, Thailand
  • A Baransky
    Astronomical Observatory Taras Shevshenko National University of Kyiv, Observatorna str. 3, Kyiv 04053, Ukraine
  • K Barynova
    Astronomical Observatory Taras Shevshenko National University of Kyiv, Observatorna str. 3, Kyiv 04053, Ukraine
  • S Beradze
    E. Kharadze Georgian National Astrophysical Observatory, Mt.Kanobili, Abastumani, 0301 Adigeni, Georgia
  • M Blažek
    Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008 Granada, Spain
  • M Boër
    ARTEMIS UMR 7250 UCA CNRS OCA, Boulevard de l’Observatoire, CS 34229, F-06304 Nice CEDEX 04, France
  • O Burkhonov
    Ulugh Beg Astronomical Institute, Uzbekistan Academy of Sciences, Astronomy str. 33, Tashkent 100052, Uzbekistan
  • N Christensen
    ARTEMIS UMR 7250 UCA CNRS OCA, Boulevard de l’Observatoire, CS 34229, F-06304 Nice CEDEX 04, France
  • A Coleiro
    CNRS, Astroparticule et Cosmologie , Université de Paris, F-75013 Paris, France
  • D Corre
    IJCLab, Univ Paris-Saclay, CNRS/IN2P3, F-91898 Orsay, France
  • M W Coughlin
    School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
  • H Crisp
    School of Physics, OzGrav-UWA, University of Western Australia, M013, 35 Stirling Highway, Crawley, WA 6009, Australia
  • T Dietrich
    Institut für Physik und Astronomie, Universität Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany
  • J-G Ducoin
    IJCLab, Univ Paris-Saclay, CNRS/IN2P3, F-91898 Orsay, France
  • P-A Duverne
    IJCLab, Univ Paris-Saclay, CNRS/IN2P3, F-91898 Orsay, France
  • G Marchal-Duval
    IJCLab, Univ Paris-Saclay, CNRS/IN2P3, F-91898 Orsay, France
  • B Gendre
    School of Physics, OzGrav-UWA, University of Western Australia, M013, 35 Stirling Highway, Crawley, WA 6009, Australia
  • P Gokuldass
    University of the Virgin Islands , College of Science and Math, 2 John Brewer’s Bay, St. Thomas, VI 00802, USA
  • H B Eggenstein
    Volkssternwarte Paderborn e.V. Im Schlosspark 13, D-33104 Paderborn – Schloss Neuhaus, Germany
  • L Eymar
    ARTEMIS UMR 7250 UCA CNRS OCA, Boulevard de l’Observatoire, CS 34229, F-06304 Nice CEDEX 04, France
  • P Hello
    IJCLab, Univ Paris-Saclay, CNRS/IN2P3, F-91898 Orsay, France
  • E J Howell
    School of Physics, OzGrav-UWA, University of Western Australia, M013, 35 Stirling Highway, Crawley, WA 6009, Australia
  • N Ismailov
    N. Tusi Shamakhy Astrophysical Observatory Azerbaijan National Academy of Sciences, settl.Mamedaliyev, AZ 5626, Shamakhy, Azerbaijan
  • D A Kann
    Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008 Granada, Spain
  • S Karpov
    FZU – Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
  • A Klotz
    IRAP, Université de Toulouse, CNRS, UPS, 14 Avenue Edouard Belin, F-31400 Toulouse, France
  • N Kochiashvili
    E. Kharadze Georgian National Astrophysical Observatory, Mt.Kanobili, Abastumani, 0301 Adigeni, Georgia
  • C Lachaud
    CNRS, Astroparticule et Cosmologie , Université de Paris, F-75013 Paris, France
  • N Leroy
    IJCLab, Univ Paris-Saclay, CNRS/IN2P3, F-91898 Orsay, France
  • W L Lin
    Physics Department and Astronomy Department, Tsinghua University, Beijing 100084, China
  • W X Li
    Physics Department and Astronomy Department, Tsinghua University, Beijing 100084, China
  • M Mašek
    FZU – Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
  • J Mo
    Physics Department and Astronomy Department, Tsinghua University, Beijing 100084, China
  • R Menard
    CNRS, Astroparticule et Cosmologie , Université de Paris, F-75013 Paris, France
  • D Morris
    University of the Virgin Islands , College of Science and Math, 2 John Brewer’s Bay, St. Thomas, VI 00802, USA
  • K Noysena
    IRAP, Université de Toulouse, CNRS, UPS, 14 Avenue Edouard Belin, F-31400 Toulouse, France
  • N B Orange
    OrangeWave Innovative Science, LLC, Moncks Corner, SC 29461, USA
  • M Prouza
    FZU – Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
  • R Rattanamala
    Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
  • T Sadibekova
    Ulugh Beg Astronomical Institute, Uzbekistan Academy of Sciences, Astronomy str. 33, Tashkent 100052, Uzbekistan
  • D Saint-Gelais
    CNRS, Astroparticule et Cosmologie , Université de Paris, F-75013 Paris, France
  • M Serrau
    CNRS, Astroparticule et Cosmologie , Université de Paris, F-75013 Paris, France
  • A Simon
    Astronomy and Space Physics Department, Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., Kyiv 01601, Ukraine
  • C Stachie
    ARTEMIS UMR 7250 UCA CNRS OCA, Boulevard de l’Observatoire, CS 34229, F-06304 Nice CEDEX 04, France
  • C C Thöne
    Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008 Granada, Spain
  • Y Tillayev
    Ulugh Beg Astronomical Institute, Uzbekistan Academy of Sciences, Astronomy str. 33, Tashkent 100052, Uzbekistan
  • D Turpin
    CNRS, CEA, Département d’Astrophysique, Astrophysique, Instrumentation et Modélisation de Paris-Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
  • A de Ugarte Postigo
    Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008 Granada, Spain
  • V Vasylenko
    Astronomy and Space Physics Department, Taras Shevchenko National University of Kyiv, 60 Volodymyrska str., Kyiv 01601, Ukraine
  • Z Vidadi
    N. Tusi Shamakhy Astrophysical Observatory Azerbaijan National Academy of Sciences, settl.Mamedaliyev, AZ 5626, Shamakhy, Azerbaijan
  • M Was
    Laboratoire d’Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France
  • X F Wang
    Physics Department and Astronomy Department, Tsinghua University, Beijing 100084, China
  • J J Zhang
    Yunnan Astronomical Observatories/Chinese Academy of Science, Kunming 650011, China
  • T M Zhang
    National Astronomical Observatories/Chinese Academy of Science 20A Datun Road, Beijing 100012, China
  • X H Zhang
    Physics Department and Astronomy Department, Tsinghua University, Beijing 100084, China

抄録

<jats:title>ABSTRACT</jats:title> <jats:p>GRANDMA (Global Rapid Advanced Network Devoted to the Multi-messenger Addicts) is a network of 25 telescopes of different sizes, including both photometric and spectroscopic facilities. The network aims to coordinate follow-up observations of gravitational-wave (GW) candidate alerts, especially those with large localization uncertainties, to reduce the delay between the initial detection and the optical confirmation. In this paper, we detail GRANDMA’s observational performance during Advanced LIGO/Advanced Virgo Observing Run 3 (O3), focusing on the second part of O3; this includes summary statistics pertaining to coverage and possible astrophysical origin of the candidates. To do so, we quantify our observation efficiency in terms of delay between GW candidate trigger time, observations, and the total coverage. Using an optimized and robust coordination system, GRANDMA followed-up about 90 per cent of the GW candidate alerts, that is 49 out of 56 candidates. This led to coverage of over 9000 deg2 during O3. The delay between the GW candidate trigger and the first observation was below 1.5 h for 50 per cent of the alerts. We did not detect any electromagnetic counterparts to the GW candidates during O3, likely due to the very large localization areas (on average thousands of degrees squares) and relatively large distance of the candidates (above 200 Mpc for 60 per cent of binary neutron star, BNS candidates). We derive constraints on potential kilonova properties for two potential BNS coalescences (GW190425 and S200213t), assuming that the events’ locations were imaged.</jats:p>

収録刊行物

被引用文献 (5)*注記

もっと見る

問題の指摘

ページトップへ