The influence of mantle plume in the genesis of the Cache Creek oceanic igneous rocks: implications for the geodynamic evolution of the inner accreted terranes of the Canadian Cordillera

抄録

<jats:p> West of Prince George, British Columbia, the Cache Creek Terrane is composed of mafic lavas interlayered with both mid-Permian pelagic limestones and Upper Triassic siliceous shales and greywackes. Gabbro, basalt, dolerites, and foliated clinopyroxene-rich ultramafic rocks are exposed within the Pinchi Fault system. The mid-Permian lavas show affinities of oceanic island tholeiites. Among the Triassic lavas, three types of rocks have been distinguished. Type 1 is geochemically similar to the mid-Permian volcanic rocks. Type 2 differs from type 1 by higher TiO<jats:sub>2</jats:sub> abundances and convex rare earth element patterns. Type 3 has the highest Zr, Nb, and Ta abundances and the greatest light rare earth element enrichment. The mafic rocks within the Pinchi Fault system are similar to N-type mid-ocean-ridge basalt (N-MORB), and the foliated ultramafic rocks are characterized by very low trace element contents, similar to extremely depleted harzburgites. Permian lavas and Triassic type 1 and igneous rocks from the Pinchi Fault system have the highest ε<jats:sub>Nd(i)</jats:sub> ratios (+7.4 to +9.6) and those of type 3 alkali have the lowest ratios (+2.0 to +5.3). The ε<jats:sub>Nd(i)</jats:sub> values of type 2 are intermediate between those of type 1 (~+7) and type 3 (~+4.9). This suggests that the Triassic rocks generated from a heterogeneous plume source or the mixing between depleted N-MORB and enriched oceanic island basalt sources. If the mafic igneous rocks sampled in central British Columbia are representative of the preserved parts of an oceanic crust, within the Cache Creek Terrane, then that crust was dominated by oceanic plateau components, perhaps due to the difficulty of subducting thick crust. </jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ