- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Bridging Ridge-to-Reef Patches: Seamless Classification of the Coast Using Very High Resolution Satellite
-
- Antoine Collin
- Tokyo Institute of Technology, O-okayama 2-12-1-W8-13, Meguro-ku, Tokyo 152-8552, Japan
-
- Philippe Archambault
- Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
-
- Serge Planes
- USR 3278 CRIOBE CNRS-EPHE, BP 1013, Papetoai, Moorea 98729, French Polynesia
Description
<jats:p>The structure and functioning of coral reef coastal zones are currently coping with an increasing variety of threats, thereby altering the coastal spatial patterns at an accelerated pace. Understanding and predicting the evolution of these highly valuable coastal ecosystems require reliable and frequent mapping and monitoring of both inhabited terrestrial and marine areas at the individual tree and coral colony spatial scale. The very high spatial resolution (VHR) mapping that was recently spearheaded by WorldView-2 (WV2) sensor with 2 m and 0.5 m multispectral (MS) and panchromatic (Pan) bands has the potential to address this burning issue. The objective of this study was to classify nine terrestrial and twelve marine patch classes with respect to spatial resolution enhancement and coast integrity using eight bands of the WV2 sensor on a coastal zone of Moorea Island, French Polynesia. The contribution of the novel WV2 spectral bands towards classification accuracy at 2 m and 0.5 m were tested using traditional and innovative Pan-sharpening techniques. The land and water classes were examined both separately and combinedly. All spectral combinations that were built only with the novel WV2 bands systematically increased the overall classification accuracy of the standard four band classification. The overall best contribution was attributed to the coastal-red edge-near infrared (NIR) 2 combination (Kappagain = 0.0287), which significantly increased the fleshy and encrusting algae (User’s Accuracygain = 18.18%) class. However, the addition of the yellow-NIR2 combination dramatically impacted the hard coral/algae patches class (Producer’s Accuracyloss = −20.88%). Enhancement of the spatial resolution reduced the standard classification accuracy, depending on the Pan-sharpening technique. The proposed composite method (local maximum) provided better overall results than the commonly used sensor method (systematic). However, the sensor technique produced the highest contribution to the hard coral thicket (PAgain = 30.36%) class with the coastal-red edge-NIR2 combination. Partitioning the coast into its terrestrial and aquatic components lowered the overall standard classification accuracy, while strongly enhancing the hard coral bommie class with the coastal-NIR2 combination (UAgain = 40%) and the green-coastal Normalized Difference Ratio (UAgain = 11.06%). VHR spaceborne remote sensing has the potential to gain substantial innovative insights into the evolution of tropical coastal ecosystems from local to regional scales, to predict the influence of anthropogenic and climate changes and to help design optimized management and conservation frameworks.</jats:p>
Journal
-
- Remote Sensing
-
Remote Sensing 5 (7), 3583-3610, 2013-07-22
MDPI AG
- Tweet
Keywords
- Science
- [SDE.MCG]Environmental Sciences/Global Changes
- seamless
- coastal mapping
- [INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
- coastal mapping; seamless; coral reefs; very high resolution; WorldView-2
- [SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems
- [STAT.ML]Statistics [stat]/Machine Learning [stat.ML]
- [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
- WorldView-2
- very high resolution
- [SDE.ES]Environmental Sciences/Environment and Society
- [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
- [SDE.IE]Environmental Sciences/Environmental Engineering
- Q
- [SHS.GEO]Humanities and Social Sciences/Geography
- [SDE.ES]Environmental Sciences/Environmental and Society
- [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
- [SPI.ELEC]Engineering Sciences [physics]/Electromagnetism
- [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
- [SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic
- coral reefs
- [INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]
- [SDE.BE]Environmental Sciences/Biodiversity and Ecology
- [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
- [STAT.ME]Statistics [stat]/Methodology [stat.ME]
Details 詳細情報について
-
- CRID
- 1360292620160264192
-
- ISSN
- 20724292
-
- Data Source
-
- Crossref
- OpenAIRE