The DIRAC code for relativistic molecular calculations

  • Trond Saue
    Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS—Université Toulouse III-Paul Sabatier 1 , 118 Route de Narbonne, F-31062 Toulouse, France
  • Radovan Bast
    Department of Information Technology, UiT The Arctic University of Norway 2 , N-9037 Tromsø, Norway
  • André Severo Pereira Gomes
    Université de Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers 3 , Atomes et Molécules, F-59000 Lille, France
  • Hans Jørgen Aa. Jensen
    Department of Physics, Chemistry and Pharmacy, University of Southern Denmark 4 , DK-5230 Odense M, Denmark
  • Lucas Visscher
    Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam 5 , NL-1081HV Amsterdam, The Netherlands
  • Ignacio Agustín Aucar
    Instituto de Modelado e Innovación Tecnológica, CONICET, and Departamento de Física—Facultad de Ciencias Exactas y Naturales 6 , UNNE, Avda. Libertad 5460, W3404AAS Corrientes, Argentina
  • Roberto Di Remigio
    Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway 7 , N-9037 Tromsø, Norway
  • Kenneth G. Dyall
    Dirac Solutions 8 , 10527 NW Lost Park Drive, Portland, Oregon 97229, USA
  • Ephraim Eliav
    School of Chemistry, Tel Aviv University 9 , Ramat Aviv, Tel Aviv 69978, Israel
  • Elke Fasshauer
    Department of Physics and Astronomy, Aarhus University 10 , Ny Munkegade 120, 8000 Aarhus, Denmark
  • Timo Fleig
    Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS—Université Toulouse III-Paul Sabatier 1 , 118 Route de Narbonne, F-31062 Toulouse, France
  • Loïc Halbert
    Université de Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers 3 , Atomes et Molécules, F-59000 Lille, France
  • Erik Donovan Hedegård
    Division of Theoretical Chemistry, Lund University, Chemical Centre 11 , P.O. Box 124, SE-221 00 Lund, Sweden
  • Benjamin Helmich-Paris
    Max-Planck-Institut für Kohlenforschung 12 , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
  • Miroslav Iliaš
    Department of Chemistry, Faculty of Natural Sciences, Matej Bel University 13 , Tajovského 40, 974 01 Banská Bystrica, Slovakia
  • Christoph R. Jacob
    Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry 14 , Gaußstr. 17, 38106 Braunschweig, Germany
  • Stefan Knecht
    ETH Zürich, Laboratorium für Physikalische Chemie 15 , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
  • Jon K. Laerdahl
    Department of Microbiology, Oslo University Hospital 16 , Oslo, Norway
  • Marta L. Vidal
    Department of Chemistry, Technical University of Denmark 17 , 2800 Kgs. Lyngby, Denmark
  • Malaya K. Nayak
    Theoretical Chemistry Section, Bhabha Atomic Research Centre 18 , Trombay, Mumbai 400085, India
  • Małgorzata Olejniczak
    Centre of New Technologies, University of Warsaw 19 , S. Banacha 2c, 02-097 Warsaw, Poland
  • Jógvan Magnus Haugaard Olsen
    Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway 7 , N-9037 Tromsø, Norway
  • Markus Pernpointner
    Kybeidos GmbH 20 , Heinrich-Fuchs-Str. 94, 69126 Heidelberg, Germany
  • Bruno Senjean
    Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam 5 , NL-1081HV Amsterdam, The Netherlands
  • Avijit Shee
    Department of Chemistry, University of Michigan 22 , Ann Arbor, Michigan 48109, USA
  • Ayaki Sunaga
    Department of Chemistry, Tokyo Metropolitan University 23 , 1-1 Minami-Osawa, Hachioji-city, Tokyo 192-0397, Japan
  • Joost N. P. van Stralen
    Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam 5 , NL-1081HV Amsterdam, The Netherlands

抄録

<jats:p>DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree–Fock, Kohn–Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.</jats:p>

収録刊行物

被引用文献 (10)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ