Neural Network Implementation of Image Rendering via Self-Calibration

この論文をさがす

説明

<jats:p>This paper proposes a new approach for selfcalibration and color image rendering using Radial Basis Function (RBF) neural network. Most empirical approaches make use of a calibration object. Here, we require no calibration object to both shape recovery and color image rendering. The neural network learning data are obtained through the rotations of a target object. The approach can generate realistic virtual images without any calibration object which has the same reflectance properties as the target object. The proposed approach uses a neural network to obtain both surface orientation and albedo, and applies another neural network to generate virtual images for any viewpoint and any direction of light source. Experiments with real data are demonstrated.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ