Resolving Site-Specific Energy Levels of Small-Molecule Donor-Acceptor Heterostructures Close to Metal Contacts

抄録

<jats:p>The active material of optoelectronic devices must accommodate for contacts which serve to collect or inject the charge carriers. It is the purpose of this work to find out to which extent properties of organic optoelectronic layers change close to metal contacts compared to known properties of bulk materials. Bottom-up fabrication capabilities of model interfaces under ultrahigh vacuum and single-atom low temperature (LT)-STM spectroscopy with density functional theory (DFT) calculations are used to detect the spatial modifications of electronic states such as frontier-orbitals at interfaces. The system under consideration is made of a silver substrate covered with a blend of C60 and ZnPc molecules of a few monolayers. When C60 and ZnPc are separately adsorbed on Ag(111), they show distinct spectroscopic features in STM. However, when C60 is added to the ZnPc monolayer, it shows scanning tunneling spectra similar to ZnPc, revealing a strong interaction of C60 with the ZnPc induced by the substrate. DFT calculations on a model complex confirm the strong hybridization of C60 with ZnPc layer upon adsorption on Ag(111), thus highlighting the role of boundary layers where the donor-acceptor character is strongly perturbed. The calculation also reveals a significant charge transfer from the Ag to the complex that is likely responsible for a downward shift of the molecular LUMO in agreement with the experiment.</jats:p>

収録刊行物

参考文献 (39)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ