Solution‐Processed Organic Solar Cells with High Open‐Circuit Voltage of 1.3 V and Low Non‐Radiative Voltage Loss of 0.16 V

  • Ning An
    CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
  • Yunhao Cai
    School of Chemistry Beihang University Beijing 100191 China
  • Hongbo Wu
    Center for Advanced Low‐Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 China
  • Ailing Tang
    CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
  • Kangning Zhang
    School of Physics State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China
  • Xiaotao Hao
    School of Physics State Key Laboratory of Crystal Materials Shandong University Jinan 250100 China
  • Zaifei Ma
    Center for Advanced Low‐Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 China
  • Qiang Guo
    Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450003 China
  • Hwa Sook Ryu
    Department of Chemistry College of Scyience Korea University Seoul 136‐713 Republic of Korea
  • Han Young Woo
    Department of Chemistry College of Scyience Korea University Seoul 136‐713 Republic of Korea
  • Yanming Sun
    School of Chemistry Beihang University Beijing 100191 China
  • Erjun Zhou
    CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China

抄録

<jats:title>Abstract</jats:title><jats:p>Compared with inorganic or perovskite solar cells, the relatively large non‐radiative recombination voltage losses (Δ<jats:italic>V</jats:italic><jats:sub>non‐rad</jats:sub>) in organic solar cells (OSCs) limit the improvement of the open‐circuit voltage (<jats:italic>V</jats:italic><jats:sub>oc</jats:sub>). Herein, OSCs are fabricated by adopting two pairs of D–π–A polymers (PBT1‐C/PBT1‐C‐2Cl and PBDB‐T/PBDB‐T‐2Cl) as electron donors and a wide‐bandgap molecule BTA3 as the electron acceptor. In these blends, a charge‐transfer state energy (<jats:italic>E</jats:italic><jats:sub>CT</jats:sub>) as high as 1.70–1.76 eV is achieved, leading to small energetic differences between the singlet excited states and charge‐transfer states (Δ<jats:italic>E</jats:italic><jats:sub>CT</jats:sub> ≈ 0.1 eV). In addition, after introducing chlorine atoms into the π‐bridge or the side chain of benzodithiophene (BDT) unit, electroluminescence external quantum efficiencies as high as 1.9 × 10<jats:sup>−3</jats:sup> and 1.0 × 10<jats:sup>−3</jats:sup> are realized in OSCs based on PBTI‐C‐2Cl and PBDB‐T‐2Cl, respectively. Their corresponding Δ<jats:italic>V</jats:italic><jats:sub>non‐rad</jats:sub> are 0.16 and 0.17 V, which are lower than those of OSCs based on the analog polymers without a chlorine atom (0.21 and 0.24 V for PBT1‐C and PBDB‐T, respectively), resulting in high <jats:italic>V</jats:italic><jats:sub>oc</jats:sub> of 1.3 V. The Δ<jats:italic>V</jats:italic><jats:sub>non‐rad</jats:sub> of 0.16 V and <jats:italic>V</jats:italic><jats:sub>oc</jats:sub> of 1.3 V achieved in PBT1‐C‐2Cl:BTA3 OSCs are thought to represent the best values for solution‐processed OSCs reported in the literature so far.</jats:p>

収録刊行物

被引用文献 (3)*注記

もっと見る

問題の指摘

ページトップへ