First operation with the JET International Thermonuclear Experimental Reactor-like wall

  • R. Neu
    EFDA-CSU 1 , Boltzmannstr. 2, 85748 Garching, Germany
  • G. Arnoux
    Euratom/CCFE Fusion Association 3 , Culham Science Centre, Abingdon OX14 3DB, United Kingdom
  • M. Beurskens
    Euratom/CCFE Fusion Association 3 , Culham Science Centre, Abingdon OX14 3DB, United Kingdom
  • V. Bobkov
    Max-Planck-Institut für Plasmaphysik 2 , Euratom Association, Boltzmannstr. 2, 85748 Garching, Germany
  • S. Brezinsek
    IEK-4, Association EURATOM/Forschungszentrum Jülich 4 GmbH, 52425, Germany
  • J. Bucalossi
    IRFM-CEA 5 , Centre de Cadarache, 13108 Saint-Paul-lez-Durance, France
  • G. Calabro
    Associazione EURATOM-ENEA sulla Fusione, CNR ENEA Frascati 6 , 00044 Frascati, Italy
  • C. Challis
    Euratom/CCFE Fusion Association 3 , Culham Science Centre, Abingdon OX14 3DB, United Kingdom
  • J. W. Coenen
    IEK-4, Association EURATOM/Forschungszentrum Jülich 4 GmbH, 52425, Germany
  • E. de la Luna
    Laboratorio Nacional de Fusion 7 , Asociation EURATOM CIEMAT, Madrid, Spain
  • P. C. de Vries
    Association EURATOM/DIFFER 8 , Rijnhuizen, P.O. Box 1207, 3430BE Nieuwegen, The Netherlands
  • R. Dux
    Max-Planck-Institut für Plasmaphysik 2 , Euratom Association, Boltzmannstr. 2, 85748 Garching, Germany
  • L. Frassinetti
    Association EURATOM-VR, Division of Plasma Physics 9 , KTH, Stockholm, Sweden
  • C. Giroud
    Euratom/CCFE Fusion Association 3 , Culham Science Centre, Abingdon OX14 3DB, United Kingdom
  • M. Groth
    Association Euratom-Tekes, Aalto University 10 , FI-00076 Aalto, Finland
  • J. Hobirk
    Max-Planck-Institut für Plasmaphysik 2 , Euratom Association, Boltzmannstr. 2, 85748 Garching, Germany
  • E. Joffrin
    IRFM-CEA 5 , Centre de Cadarache, 13108 Saint-Paul-lez-Durance, France
  • P. Lang
    Max-Planck-Institut für Plasmaphysik 2 , Euratom Association, Boltzmannstr. 2, 85748 Garching, Germany
  • M. Lehnen
    IEK-4, Association EURATOM/Forschungszentrum Jülich 4 GmbH, 52425, Germany
  • E. Lerche
    Association EURATOM-Etat Belge 11 , ERM-KMS, Brussels, Belgium
  • T. Loarer
    IRFM-CEA 5 , Centre de Cadarache, 13108 Saint-Paul-lez-Durance, France
  • P. Lomas
    Euratom/CCFE Fusion Association 3 , Culham Science Centre, Abingdon OX14 3DB, United Kingdom
  • G. Maddison
    Euratom/CCFE Fusion Association 3 , Culham Science Centre, Abingdon OX14 3DB, United Kingdom
  • C. Maggi
    Max-Planck-Institut für Plasmaphysik 2 , Euratom Association, Boltzmannstr. 2, 85748 Garching, Germany
  • G. Matthews
    Euratom/CCFE Fusion Association 3 , Culham Science Centre, Abingdon OX14 3DB, United Kingdom
  • S. Marsen
    Max-Planck-Institut für Plasmaphysik 12 , Euratom Association, Wendelsteinstr. 1, 17491 Greifswald, Germany
  • M.-L. Mayoral
    Euratom/CCFE Fusion Association 3 , Culham Science Centre, Abingdon OX14 3DB, United Kingdom
  • A. Meigs
    Euratom/CCFE Fusion Association 3 , Culham Science Centre, Abingdon OX14 3DB, United Kingdom
  • Ph. Mertens
    IEK-4, Association EURATOM/Forschungszentrum Jülich 4 GmbH, 52425, Germany
  • I. Nunes
    Institute of Plasmas and Nuclear Fusion 13 , Association EURATOM-IST, Lisbon, Portugal
  • V. Philipps
    IEK-4, Association EURATOM/Forschungszentrum Jülich 4 GmbH, 52425, Germany
  • T. Pütterich
    Max-Planck-Institut für Plasmaphysik 2 , Euratom Association, Boltzmannstr. 2, 85748 Garching, Germany
  • F. Rimini
    Euratom/CCFE Fusion Association 3 , Culham Science Centre, Abingdon OX14 3DB, United Kingdom
  • M. Sertoli
    Max-Planck-Institut für Plasmaphysik 2 , Euratom Association, Boltzmannstr. 2, 85748 Garching, Germany
  • B. Sieglin
    Max-Planck-Institut für Plasmaphysik 2 , Euratom Association, Boltzmannstr. 2, 85748 Garching, Germany
  • A. C. C. Sips
    EFDA-CSU, Culham Science Centre 14 , OX14 3DB Abingdon, United Kingdom
  • D. van Eester
    Association EURATOM-Etat Belge 11 , ERM-KMS, Brussels, Belgium
  • G. van Rooij
    Association EURATOM/DIFFER 8 , Rijnhuizen, P.O. Box 1207, 3430BE Nieuwegen, The Netherlands

抄録

<jats:p>To consolidate International Thermonuclear Experimental Reactor (ITER) design choices and prepare for its operation, Joint European Torus (JET) has implemented ITER's plasma facing materials, namely, Be for the main wall and W in the divertor. In addition, protection systems, diagnostics, and the vertical stability control were upgraded and the heating capability of the neutral beams was increased to over 30 MW. First results confirm the expected benefits and the limitations of all metal plasma facing components (PFCs) but also yield understanding of operational issues directly relating to ITER. H-retention is lower by at least a factor of 10 in all operational scenarios compared to that with C PFCs. The lower C content (≈ factor 10) has led to much lower radiation during the plasma burn-through phase eliminating breakdown failures. Similarly, the intrinsic radiation observed during disruptions is very low, leading to high power loads and to a slow current quench. Massive gas injection using a D2/Ar mixture restores levels of radiation and vessel forces similar to those of mitigated disruptions with the C wall. Dedicated L-H transition experiments indicate a 30% power threshold reduction, a distinct minimum density, and a pronounced shape dependence. The L-mode density limit was found to be up to 30% higher than for C allowing stable detached divertor operation over a larger density range. Stable H-modes as well as the hybrid scenario could be re-established only when using gas puff levels of a few 1021 es−1. On average, the confinement is lower with the new PFCs, but nevertheless, H factors up to 1 (H-Mode) and 1.3 (at βN≈3, hybrids) have been achieved with W concentrations well below the maximum acceptable level.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

キーワード

詳細情報 詳細情報について

問題の指摘

ページトップへ