New direction and perspectives in elastic instability and turbulence in various viscoelastic flow geometries without inertia

説明

<jats:p>We shortly describe the main results on elastically driven instabilities and elastic turbulence in viscoelastic inertialess flows with curved streamlines. Then we describe a theory of elastic turbulence and prediction of elastic waves Re ≪ 1 and Wi ≫ 1, which speed depends on the elastic stress similar to the Alfvén waves in magneto-hydrodynamics and in a contrast to all other, which speed depends on medium elasticity. Since the established and testified mechanism of elastic instability of viscoelastic flows with curvilinear streamlines becomes ineffective at zero curvature, so parallel shear flows are proved linearly stable, similar to Newtonian parallel shear flows. However, the linear stability of parallel shear flows does not imply their global stability. Here we switch to the main subject, namely a recent development in inertialess parallel shear channel flow of polymer solutions. In such flow, we discover an elastically driven instability, elastic turbulence, elastic waves, and drag reduction down to relaminarization that contradict the linear stability prediction. In this regard, we discuss briefly normal versus non-normal bifurcations in such flows, flow resistance, velocity and pressure fluctuations, and coherent structures and spectral properties of a velocity field as a function of Wi at high elasticity number.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ