Supramolecular Chalcogen‐Bonded Semiconducting Nanoribbons at Work in Lighting Devices

  • Deborah Romito
    Department of Organic Chemistry Faculty of Chemistry University of Vienna Währinger Straße 38 1090 Vienna Austria
  • Elisa Fresta
    Technical University of Munich Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing Germany
  • Luca M. Cavinato
    Technical University of Munich Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing Germany
  • Hanspeter Kählig
    Department of Organic Chemistry Faculty of Chemistry University of Vienna Währinger Straße 38 1090 Vienna Austria
  • Heinz Amenitsch
    Graz University of Technology Institute for Inorganic Chemistry Stremayergasse 9/V 8010 Graz Austria
  • Laura Caputo
    Institute of Condensed Matter and Nanosciences Université catholique de Louvain (UCLouvain) Chemin des étoiles 8 1348 Louvain-la-Neuve Belgium
  • Yusheng Chen
    Université de Strasbourg, CNRS, ISIS 8 allée Gaspard Monge 67000 Strasbourg France
  • Paolo Samorì
    Université de Strasbourg, CNRS, ISIS 8 allée Gaspard Monge 67000 Strasbourg France
  • Jean‐Christophe Charlier
    Institute of Condensed Matter and Nanosciences Université catholique de Louvain (UCLouvain) Chemin des étoiles 8 1348 Louvain-la-Neuve Belgium
  • Rubén D. Costa
    Technical University of Munich Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing Germany
  • Davide Bonifazi
    Department of Organic Chemistry Faculty of Chemistry University of Vienna Währinger Straße 38 1090 Vienna Austria

抄録

<jats:title>Abstract</jats:title><jats:p>This work describes the design and synthesis of a π‐conjugated telluro[3,2‐<jats:italic>β</jats:italic>][1]‐tellurophene‐based synthon that, embodying pyridyl and haloaryl chalcogen‐bonding acceptors, self‐assembles into nanoribbons through chalcogen bonds. The ribbons π‐stack in a multi‐layered architecture both in single crystals and thin films. Theoretical studies of the electronic states of chalcogen‐bonded material showed the presence of a local charge density between Te and N atoms. OTFT‐based charge transport measurements showed hole‐transport properties for this material. Its integration as a p‐type semiconductor in multi‐layered Cu<jats:sup>I</jats:sup>‐based light‐emitting electrochemical cells (LECs) led to a 10‐fold increase in stability (38 h <jats:italic>vs</jats:italic>. 3 h) compared to single‐layered devices. Finally, using the reference tellurotellurophene congener bearing a C−H group instead of the pyridyl N atom, a herringbone solid‐state assembly is formed without charge transport features, resulting in LECs with poor stabilities (<1 h).</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

キーワード

問題の指摘

ページトップへ