A Study of Magnetic Relaxation in Dysprosium(III) Single‐Molecule Magnets

  • You‐Song Ding
    Frontier Institute of Science and Technology (FIST) State Key Laboratory for Mechanical Behavior of Materials MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, and School of Science Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 P.R. China
  • Tian Han
    Frontier Institute of Science and Technology (FIST) State Key Laboratory for Mechanical Behavior of Materials MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, and School of Science Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 P.R. China
  • Yuan‐Qi Zhai
    Frontier Institute of Science and Technology (FIST) State Key Laboratory for Mechanical Behavior of Materials MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, and School of Science Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 P.R. China
  • Daniel Reta
    Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
  • Nicholas F. Chilton
    Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
  • Richard E. P. Winpenny
    Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
  • Yan‐Zhen Zheng
    Frontier Institute of Science and Technology (FIST) State Key Laboratory for Mechanical Behavior of Materials MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, and School of Science Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 P.R. China

説明

<jats:title>Abstract</jats:title><jats:p>Although the development of single‐molecule magnets (SMMs) is rapid, there are only two families of high energy barrier (<jats:italic>U</jats:italic><jats:sub>eff</jats:sub>) dysprosium(III) SMMs known so far: the cyclopentadienyl (Cp) family with a sandwich structure and the pentagonal‐bipyramidal (PB) family with <jats:italic>D</jats:italic><jats:sub>5<jats:italic>h</jats:italic></jats:sub> symmetry. These high‐barrier SMMs, which usually possess <jats:italic>U</jats:italic><jats:sub>eff</jats:sub>>500 cm<jats:sup>−1</jats:sup> allow the separate study of the four magnetic relaxation paths, namely, direct, quantum tunnelling, Raman and Orbach processes, in detail. Whereas the first family is chemically more challenging to modify the Cp rings, it is shown herein that the latter family, with the common formulae [DyX<jats:sup>1</jats:sup>X<jats:sup>2</jats:sup>(L<jats:sub>eq</jats:sub>)<jats:sub>5</jats:sub>]<jats:sup>+</jats:sup>, such as X<jats:sup>1</jats:sup>/X<jats:sup>2</jats:sup>=<jats:sup>−</jats:sup>OCMe<jats:sub>3</jats:sub>, <jats:sup>−</jats:sup>OSiMe<jats:sub>3</jats:sub>, <jats:sup>−</jats:sup>OPh, Cl<jats:sup>−</jats:sup> or Br<jats:sup>−</jats:sup>; L<jats:sub>eq</jats:sub>=THF/pyridine/4‐methylpyridine, can be readily fine‐tuned with a range of axial and equatorial ligands by simple substitution reactions. This allows unambiguous confirmation that the <jats:italic>U</jats:italic><jats:sub>eff</jats:sub> mainly depends on the identity of X<jats:sup>1</jats:sup> and X<jats:sup>2</jats:sup>, rather than on L<jats:sub>eq</jats:sub>. More importantly, the fitted parameters are barrier dependent. If X<jats:sup>1</jats:sup> is an O donor and X<jats:sup>2</jats:sup> is a halide, 500<<jats:italic>U</jats:italic><jats:sub>eff</jats:sub><600 cm<jats:sup>−1</jats:sup>, log <jats:italic>τ</jats:italic><jats:sub>0avg</jats:sub> (s)=−10.66, log <jats:italic>C</jats:italic><jats:sub>avg</jats:sub> (s<jats:sup>−1</jats:sup> K<jats:sup>−<jats:italic>n</jats:italic></jats:sup>)= −5.05, <jats:italic>n</jats:italic><jats:sub>avg</jats:sub>=4.1 and <jats:italic>T</jats:italic><jats:sub>H</jats:sub>=9 K (in which <jats:italic>τ</jats:italic><jats:sub>0</jats:sub> is the pre‐exponential factor for the Orbach relaxation process, <jats:italic>C</jats:italic> and <jats:italic>n</jats:italic> are parameters used to describe Raman relaxation, and <jats:italic>T</jats:italic><jats:sub>H</jats:sub> is the highest temperature at which magnetic hysteresis is observed). For cases in which both X<jats:sup>1</jats:sup> and X<jats:sup>2</jats:sup> are O donors, 900<<jats:italic>U</jats:italic><jats:sub>eff</jats:sub><1300 cm<jats:sup>−1</jats:sup>, log <jats:italic>τ</jats:italic><jats:sub>0avg</jats:sub> (s)=−11.63, log <jats:italic>C</jats:italic><jats:sub>avg</jats:sub> (s<jats:sup>−1</jats:sup> K<jats:sup>−<jats:italic>n</jats:italic></jats:sup>)= −6.03, <jats:italic>n</jats:italic><jats:sub>avg</jats:sub>=4.1 and 18<<jats:italic>T</jats:italic><jats:sub>H</jats:sub><25 K. Based on these results, it can be further concluded that <jats:italic>U</jats:italic><jats:sub>eff</jats:sub> not only has a linear correlation to the axial Dy−X bond lengths, but also to <jats:italic>T</jats:italic><jats:sub>H</jats:sub> for these PB SMMs. This represents the first systematic study of a family of lanthanide SMMs and derives the first magneto‐structural correlation in Dy SMMs.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

問題の指摘

ページトップへ