Discovery of Unconventional Proton‐Conducting Inorganic Solids via Defect‐Chemistry‐Trained, Interpretable Machine Learning

DOI Web Site 参考文献60件 オープンアクセス
  • Susumu Fujii
    Division of Materials and Manufacturing Science Osaka University 2‐1 Yamadaoka, Suita Osaka 565‐0871 Japan
  • Yuta Shimizu
    INAMORI Frontier Research Center Kyushu University 744 Motooka Fukuoka 819‐0395 Japan
  • Junji Hyodo
    INAMORI Frontier Research Center Kyushu University 744 Motooka Fukuoka 819‐0395 Japan
  • Akihide Kuwabara
    Nanostructures Research Laboratory Japan Fine Ceramics Center 2‐4‐1, Mutsuno, Atsuta Nagoya 456‐8587 Japan
  • Yoshihiro Yamazaki
    INAMORI Frontier Research Center Kyushu University 744 Motooka Fukuoka 819‐0395 Japan

この論文をさがす

説明

<jats:title>Abstract</jats:title><jats:p>High‐throughput computational screening and machine learning hold significant potential for exploring diverse chemical compositions and discovering novel inorganic solids. However, the complexity of point defects, which occur in all inorganic solids and are often crucial to their functionality and synthesizability, presents significant challenges. Here, this study presents a defect‐chemistry‐trained, interpretable machine learning approach, designed to accelerate the exploration and discovery of unconventional proton‐conducting inorganic solid electrolytes. By considering dopant dissolution and hydration reactions, the machine learning models provide quantitative predictions and physical interpretations for synthesizable host–dopant combinations with hydration capabilities across various structures. Utilizing these insights, two unconventional proton conductors, Pb‐doped Bi<jats:sub>12</jats:sub>SiO<jats:sub>20</jats:sub> sillenite and eulytite‐type Sr‐doped Bi<jats:sub>4</jats:sub>Ge<jats:sub>3</jats:sub>O<jats:sub>12</jats:sub>, are discovered in the first two synthesis trials. Notably, the Pb‐doped Bi<jats:sub>12</jats:sub>SiO<jats:sub>20</jats:sub> represents an unprecedented class of proton‐conducting electrolyte composed solely of groups 14 and 15 cations and featuring a sillenite structure. It exhibits unique and fast 3D proton conduction along a loosely bonded BiO<jats:sub>5</jats:sub> network. This study demonstrates an efficient approach for exploring novel inorganic materials.</jats:p>

収録刊行物

参考文献 (60)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ