Motion segmentation by subspace separation and model selection

DOI PDF 被引用文献2件 オープンアクセス

説明

Reformulating the Costeira-Kanade algorithm as a pure mathematical theorem independent of the Tomasi-Kanade factorization, we present a robust segmentation algorithm by incorporating such techniques as dimension correction, model selection using the geometric AIC, and least-median fitting. Doing numerical simulations, we demonstrate that oar algorithm dramatically outperforms existing methods. It does not involve any parameters which need to be adjusted empirically.

収録刊行物

被引用文献 (2)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ