- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Quantitative analysis in LC3-II protein <i>in vitro</i> maturation of porcine oocyte
Search this article
Description
<jats:title>Summary</jats:title><jats:p>Microtubule-associated protein light chain 3 (LC3)-II is a marker of autophagosome. In this study, LC3-II expression was used to identify autophagy, during the <jats:italic>in vitro</jats:italic> maturation of porcine oocytes. In a time-course experiment, cumulus–oocyte complexes (COCs) were cultured in NCSU23 medium for 0 h, 14 h, 28 h or 42 h. The cumulus cells were removed and denuded oocytes were processed for western blotting or immunostaining. Western blotting showed that the LC3-II levels changed over time, with maximum levels observed at 14 h and minimum levels at 42 h. Immunostaining of LC3 showed the signals with dot shapes and ring shapes in oocytes at every group that probably represent autophagosomes. To ascertain whether autophagic induction and degradation were occurring, we treated the cultures with autophagic inhibitors. Lysosomal protease inhibitor E64d and pepstatin A increased the LC3-II levels and wortmannin, inhibitor of autophagic induction, decreased the LC3-II levels. Western blotting and immunostaining demonstrated that LC3-II is present in porcine oocytes cultured <jats:italic>in vitro</jats:italic>. The decreased LC3-II levels after wortmannin treatment suggest that it is newly generated in porcine oocytes, a phenomenon that represents autophagic induction. Furthermore, increased LC3-II levels after E64d and pepstatin A addition imply that LC3-II is degraded by lysosomal proteases, an indication of autophagic degradation. Our results suggest that autophagy, which is a dynamic process whereby autophagosomes are newly generated and subsequently degraded, is probably occurring in porcine oocytes during <jats:italic>in vitro</jats:italic> maturation.</jats:p>
Journal
-
- Zygote
-
Zygote 22 (3), 404-410, 2013-06-12
Cambridge University Press (CUP)