Determining <b><i>L</i></b>‐<b><i>M</i></b>‐<b><i>N</i></b> Current Sheet Coordinates at the Magnetopause From Magnetospheric Multiscale Data

  • R. E. Denton
    Department of Physics and Astronomy Dartmouth College Hanover NH USA
  • B. U. Ö. Sonnerup
    Thayer School of Engineering Dartmouth College Hanover NH USA
  • C. T. Russell
    Institute of Geophysics and Planetary Physics University of California Los Angeles CA USA
  • H. Hasegawa
    Institute of Space and Astronautical Science JAXA Sagamihara Japan
  • T.‐D. Phan
    Space Science Laboratory University of California Berkeley CA USA
  • R. J. Strangeway
    Institute of Geophysics and Planetary Physics University of California Los Angeles CA USA
  • B. L. Giles
    NASA Goddard Space Flight Center Greenbelt MD USA
  • R. E Ergun
    Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA
  • P.‐A. Lindqvist
    Space and Plasma Physics Royal Institute of Technology Stockholm Sweden
  • R. B. Torbert
    Institute for the Study of Earth, Oceans, and Space University of New Hampshire Durham NH USA
  • J. L Burch
    Space Science and Engineering Division Southwest Research Institute San Antonio TX USA
  • S. K. Vines
    Space Science and Engineering Division Southwest Research Institute San Antonio TX USA

抄録

<jats:title>Abstract</jats:title><jats:p>We discuss methods to determine <jats:italic>L</jats:italic>‐<jats:italic>M</jats:italic>‐<jats:italic>N</jats:italic> coordinate systems for current sheet crossings observed by the Magnetospheric Multiscale (MMS) spacecraft mission during ongoing reconnection, where <jats:bold>e</jats:bold><jats:sub><jats:italic>L</jats:italic></jats:sub> is the direction of the reconnecting component of the magnetic field, <jats:bold>B</jats:bold>, and <jats:bold>e</jats:bold><jats:sub><jats:italic>N</jats:italic></jats:sub> is normal to the magnetopause. We present and test a new hybrid method, with <jats:bold>e</jats:bold><jats:sub><jats:italic>L</jats:italic></jats:sub> estimated as the maximum variance direction of <jats:bold>B</jats:bold> (MVAB) and <jats:bold>e</jats:bold><jats:sub><jats:italic>N</jats:italic></jats:sub> as the direction of maximum directional derivative of <jats:bold>B</jats:bold>, and then adjust these directions to be perpendicular. In the best case, only small adjustment is needed. Results from this method, applied to an MMS crossing of the dayside magnetopause at 1305:45 UT on 16 October 2015, are discussed and compared with those from other methods for which <jats:bold>e</jats:bold><jats:sub><jats:italic>N</jats:italic></jats:sub> is obtained by other means. Each of the other evaluations can be combined with <jats:bold>e</jats:bold><jats:sub><jats:italic>L</jats:italic></jats:sub> from MVAB in a generalized hybrid approach to provide an <jats:italic>L</jats:italic>‐<jats:italic>M</jats:italic>‐<jats:italic>N</jats:italic> system. The quality of the results is judged by eigenvalue ratios, constancy of directions using different data segments and methods, and expected sign and magnitude of the normal component of <jats:bold>B</jats:bold>. For this event, the hybrid method appears to produce <jats:bold>e</jats:bold><jats:sub><jats:italic>N</jats:italic></jats:sub> accurate to within less than 10°. We discuss variance analysis using the electric current density, <jats:bold>J</jats:bold>, or the <jats:bold>J</jats:bold> × <jats:bold>B</jats:bold> force, which yield promising results, and minimum Faraday residue analysis and MVAB alone, which can be useful for other events. We also briefly discuss results from our hybrid method and MVAB alone for a few other MMS reconnection events.</jats:p>

収録刊行物

被引用文献 (4)*注記

もっと見る

参考文献 (27)*注記

もっと見る

関連プロジェクト

もっと見る

問題の指摘

ページトップへ