Lithium polyhydrides synthesized under high pressure and high temperature

  • Takahiro Matsuoka
    Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering Gifu University 1‐1 Yanagido Gifu 501‐1193 Japan
  • Keiji Kuno
    Environmental and Renewable Energy Systems Division, Graduate School of Engineering Gifu University 1‐1 Yanagido Gifu 501‐1193 Japan
  • Kenji Ohta
    Department of Earth and Planetary Sciences Tokyo Institute of Technology 2‐12‐1 Ookayama Meguro Tokyo 152‐8551 Japan
  • Masafumi Sakata
    High Pressure Research Division, Center for Science and Technology under Extreme Conditions Osaka University 1‐3 Machikaneyama Toyonaka Osaka 560‐8531 Japan
  • Yuki Nakamoto
    High Pressure Research Division, Center for Science and Technology under Extreme Conditions Osaka University 1‐3 Machikaneyama Toyonaka Osaka 560‐8531 Japan
  • Naohisa Hirao
    Japan Synchrotron Radiation Research Institute (JASRI) 1‐1‐1 Kouto Sayo Hyogo 679‐5198 Japan
  • Yasuo Ohishi
    Japan Synchrotron Radiation Research Institute (JASRI) 1‐1‐1 Kouto Sayo Hyogo 679‐5198 Japan
  • Katsuya Shimizu
    High Pressure Research Division, Center for Science and Technology under Extreme Conditions Osaka University 1‐3 Machikaneyama Toyonaka Osaka 560‐8531 Japan
  • Tetsuji Kume
    Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering Gifu University 1‐1 Yanagido Gifu 501‐1193 Japan
  • Shigeo Sasaki
    Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering Gifu University 1‐1 Yanagido Gifu 501‐1193 Japan

説明

<jats:p>Polyhydrides of alkali metals under high pressures have been attracting great interests owing to the predicted pressure‐stabilized untraditional stoichiometries and potential superconductivity. We have performed Raman scattering measurements of lithium polyhydrides synthesized under high pressure and high temperature conditions up to 182 GPa. Between 30 and 180 GPa, four phases appear, and they are tentatively named <jats:italic>α</jats:italic> (30–140 GPa), <jats:italic>β</jats:italic> (30–90 GPa), <jats:italic>γ</jats:italic> (90–140 GPa), and <jats:italic>δ</jats:italic> (140 GPa) phase. By observing the H<jats:sub>2</jats:sub> vibrons at higher wavenumbers than pure H<jats:sub>2</jats:sub> and their pressure dependence, it was revealed that the <jats:italic>α</jats:italic> phase contains electrically neutral H<jats:sub>2</jats:sub> in its crystal lattice without electron transfer from Li atoms. The comparisons with H<jats:sub>2</jats:sub>‐containing rare gas compounds Ar(H<jats:sub>2</jats:sub>)<jats:sub>2</jats:sub>, Kr(H<jats:sub>2</jats:sub>)<jats:sub>4</jats:sub>, and Xe(H<jats:sub>2</jats:sub>)<jats:sub>8</jats:sub> suggest that a H<jats:sub>2</jats:sub> molecule is surrounded by six to eight neighboring H<jats:sub>2</jats:sub> molecules in the <jats:italic>α</jats:italic> phase. On the other hand, the Raman spectra of the <jats:italic>β</jats:italic>, <jats:italic>γ</jats:italic>, and <jats:italic>δ</jats:italic> phases suggest that they contain the elongated H<jats:sub>2</jats:sub> that is negatively charged by the electron transferred from the surrounding matrices. All the <jats:italic>α</jats:italic>, <jats:italic>β</jats:italic>, <jats:italic>γ</jats:italic>, and <jats:italic>δ</jats:italic> phases were found to remain transparent insulators at pressures below 182 GPa. Copyright © 2017 John Wiley & Sons, Ltd.</jats:p>

収録刊行物

被引用文献 (2)*注記

もっと見る

参考文献 (39)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ