Mechanisms of Systemic Wound Response in Drosophila

この論文をさがす

説明

In response to cellular and tissue losses caused by physical or chemical injuries, organisms must activate multiple wound repair systems at the cellular, tissue, and organismal levels. The systemic wound response (SWR) that occurs via interorgan communication between local wound sites and remote organs ensures that the host is protected efficiently in response to a local wound. The local wound response around the wound site is fairly well documented, but the molecular mechanisms that allow the host to launch SWR are poorly understood. Recent studies on the Drosophila adult model system have shown that the local wound response is not restricted to the wound site because it plays an essential role in generating signals transmitted to remote organs that subsequently achieve SWR. By exploiting the genetic methods available for investigating Drosophila, we are just beginning to understand the complex interorgan networks that operate during SWRs. This review discusses the basic processes involved with classical integumental wound responses and tissue regeneration, such as epithelial cell movement, hemocyte recruitment, apoptosis, melanization, and generation of reactive oxygen species, as well as the recently described intestinal epithelial cell renewal program that occurs in response to gut cell damages. Furthermore, we discuss how these local wound responses integrate with organ-to-organ communication to launch SWR. Genetic analysis of SWRs using the Drosophila model system will provide a unique opportunity to dissect the molecular mechanisms that control wound-induced organ-to-organ communication.

収録刊行物

被引用文献 (3)*注記

もっと見る

参考文献 (143)*注記

もっと見る

関連プロジェクト

もっと見る

問題の指摘

ページトップへ