Measurement of the Magnetic Reconnection Rate in the Earth's Magnetotail
-
- T. K. M. Nakamura
- Space Research Institute Austrian Academy of Sciences Graz Austria
-
- K. J. Genestreti
- Space Research Institute Austrian Academy of Sciences Graz Austria
-
- Y.‐H. Liu
- Department of Physics and Astronomy Dartmouth College Hanover NH USA
-
- R. Nakamura
- Space Research Institute Austrian Academy of Sciences Graz Austria
-
- W.‐L. Teh
- Space Science Centre, Institute of Climate Change Universiti Kebangsaan Malaysia Bangi Malaysia
-
- H. Hasegawa
- Institute of Space and Astronautical Science JAXA Sagamihara Japan
-
- W. Daughton
- Los Alamos National Laboratory Los Alamos NM USA
-
- M. Hesse
- Birkeland Centre for Space Science, Department of Physics and Technology University of Bergen Bergen Norway
-
- R. B. Torbert
- Space Science Center University of New Hampshire Durham NH USA
-
- J. L. Burch
- Space Science and Engineering Division Southwest Research Institute San Antonio TX USA
-
- B. L. Giles
- Heliophysics Science Division NASA Goddard Space Flight Center Greenbelt MD USA
この論文をさがす
説明
<jats:title>Abstract</jats:title><jats:p>In the Earth's magnetotail, magnetic reconnection releases stored magnetic energy and drives magnetospheric convection. The rate at which magnetic flux is transferred from the reconnection inflow to outflow regions is determined by the reconnection electric field <jats:italic>E</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub>, which is often referred to as the unnormalized reconnection rate. To better quantify the efficiency of reconnection, this electric field <jats:italic>E</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> is often normalized by the characteristic Alfvén speed and the reconnecting magnetic field. This parameter is generally called the normalized or dimensionless reconnection rate <jats:italic>R</jats:italic>. In this paper, we employ a two‐dimensional fully kinetic simulation to model a magnetotail reconnection event with weak geomagnetic activity (<200 nT of the <jats:italic>AE</jats:italic> index) observed by the Magnetospheric Multiscale (MMS) mission on 11 July 2017. We obtain <jats:italic>R</jats:italic> and <jats:italic>E</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> from direct measurements in the diffusion region and indirect measurements of the rate at the separatrix using a recently proposed remote sensing technique. The measured normalized rate for this MMS event is <jats:italic>R</jats:italic> ∼0.15–0.2, consistent with theoretical and simulation models of fast collisionless reconnection. This corresponds to an unnormalized rate of <jats:italic>E</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> ∼2–3 mV/m. Based on quantitative consistencies between the simulation and the MMS observations, we conclude that our estimates of the reconnection rates are reasonably accurate. Given that past studies have found <jats:italic>E</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> of the order ∼10 mV/m during strong geomagnetic substorms, these results indicate that the local <jats:italic>E</jats:italic><jats:sub><jats:italic>r</jats:italic></jats:sub> in magnetotail reconnection may be an important parameter controlling the amplitude of geomagnetic disturbances.</jats:p>
収録刊行物
-
- Journal of Geophysical Research: Space Physics
-
Journal of Geophysical Research: Space Physics 123 (11), 9150-9168, 2018-11
American Geophysical Union (AGU)
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1360567183245384704
-
- ISSN
- 21699402
- 21699380
-
- 資料種別
- journal article
-
- データソース種別
-
- Crossref
- KAKEN