LOCAL NEWFORMS AND FORMAL EXTERIOR SQUARE L-FUNCTIONS

  • MICHITAKA MIYAUCHI
    Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
  • TAKUYA YAMAUCHI
    Department of Mathematics, Faculty of Education, Kagoshima University, Korimoto 1-20-6 Kagoshima 890-0065, Japan

説明

<jats:p>Let F be a non-archimedean local field of characteristic zero. Jacquet and Shalika attached a family of zeta integrals to unitary irreducible generic representations π of GL<jats:sub>n</jats:sub>(F). In this paper, we show that the Jacquet–Shalika integral attains a certain L-function, the so-called formal exterior square L-function, when the Whittaker function is associated to a newform for π. By considerations on the Galois side, formal exterior square L-functions are equal to exterior square L-functions for some principal series representations.</jats:p>

収録刊行物

参考文献 (12)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ