Chromosome-level genome assembly of Ophiorrhiza pumila reveals the evolution of camptothecin biosynthesis

説明

<jats:title>Abstract</jats:title><jats:p>Plant genomes remain highly fragmented and are often characterized by hundreds to thousands of assembly gaps. Here, we report chromosome-level reference and phased genome assembly of<jats:italic>Ophiorrhiza pumila</jats:italic>, a camptothecin-producing medicinal plant, through an ordered multi-scaffolding and experimental validation approach. With 21 assembly gaps and a contig N50 of 18.49 Mb,<jats:italic>Ophiorrhiza</jats:italic>genome is one of the most complete plant genomes assembled to date. We also report 273 nitrogen-containing metabolites, including diverse monoterpene indole alkaloids (MIAs). A comparative genomics approach identifies strictosidine biogenesis as the origin of MIA evolution. The emergence of strictosidine biosynthesis-catalyzing enzymes precede downstream enzymes’ evolution post γ whole-genome triplication, which occurred approximately 110 Mya in<jats:italic>O. pumila</jats:italic>, and before the whole-genome duplication in<jats:italic>Camptotheca acuminata</jats:italic>identified here. Combining comparative genome analysis, multi-omics analysis, and metabolic gene-cluster analysis, we propose a working model for MIA evolution, and a pangenome for MIA biosynthesis, which will help in establishing a sustainable supply of camptothecin.</jats:p>

収録刊行物

  • Nature Communications

    Nature Communications 12 (1), 405-, 2021-01-15

    Springer Science and Business Media LLC

被引用文献 (5)*注記

もっと見る

参考文献 (141)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ