- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Silicon carbide: A unique platform for metal-oxide-semiconductor physics
-
- Gang Liu
- Rutgers University 1 Institute for Advanced Materials, Devices and Nanotechnology, , Piscataway, New Jersey 08854, USA
-
- Blair R. Tuttle
- Vanderbilt University 2 Department of Physics and Astronomy, , Nashville, Tennessee 37235, USA
-
- Sarit Dhar
- Auburn University 3 Department of Physics, , Auburn, Alabama 36849, USA
Description
<jats:p>A sustainable energy future requires power electronics that can enable significantly higher efficiencies in the generation, distribution, and usage of electrical energy. Silicon carbide (4H-SiC) is one of the most technologically advanced wide bandgap semiconductor that can outperform conventional silicon in terms of power handling, maximum operating temperature, and power conversion efficiency in power modules. While SiC Schottky diode is a mature technology, SiC power Metal Oxide Semiconductor Field Effect Transistors are relatively novel and there is large room for performance improvement. Specifically, major initiatives are under way to improve the inversion channel mobility and gate oxide stability in order to further reduce the on-resistance and enhance the gate reliability. Both problems relate to the defects near the SiO2/SiC interface, which have been the focus of intensive studies for more than a decade. Here we review research on the SiC MOS physics and technology, including its brief history, the state-of-art, and the latest progress in this field. We focus on the two main scientific problems, namely, low channel mobility and bias temperature instability. The possible mechanisms behind these issues are discussed at the device physics level as well as the atomic scale, with the support of published physical analysis and theoretical studies results. Some of the most exciting recent progress in interface engineering for improving the channel mobility and fundamental understanding of channel transport is reviewed.</jats:p>
Journal
-
- Applied Physics Reviews
-
Applied Physics Reviews 2 (2), 021307-, 2015-06-01
AIP Publishing
- Tweet
Details 詳細情報について
-
- CRID
- 1360574093762392832
-
- ISSN
- 19319401
-
- Data Source
-
- Crossref