Expression Profiling Identifies Altered Expression of Genes That Contribute to the Inhibition of Transforming Growth Factor-β Signaling in Ovarian Cancer

  • Jan S. Sunde
    1Walter Reed Army Medical Center, Washington, District of Columbia;
  • Howard Donninger
    2Department of Cell and Cancer Biology and
  • Kongming Wu
    4Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania; and
  • Michael E. Johnson
    5Laboratory of Gynecologic Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
  • Richard G. Pestell
    4Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania; and
  • G. Scott Rose
    1Walter Reed Army Medical Center, Washington, District of Columbia;
  • Samuel C. Mok
    5Laboratory of Gynecologic Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
  • John Brady
    3Laboratory of Cellular Oncology Virus Tumor Biology Section, National Cancer Institute, Bethesda, Maryland;
  • Tomas Bonome
    2Department of Cell and Cancer Biology and
  • Michael J. Birrer
    2Department of Cell and Cancer Biology and

抄録

<jats:title>Abstract</jats:title> <jats:p>Ovarian cancer is resistant to the antiproliferative effects of transforming growth factor-β (TGF-β); however, the mechanism of this resistance remains unclear. We used oligonucleotide arrays to profile 37 undissected, 68 microdissected advanced-stage, and 14 microdissected early-stage papillary serous cancers to identify signaling pathways involved in ovarian cancer. A total of seven genes involved in TGF-β signaling were identified that had altered expression &gt;1.5-fold (P &lt; 0.001) in the ovarian cancer specimens compared with normal ovarian surface epithelium. The expression of these genes was coordinately altered: genes that inhibit TGF-β signaling (DACH1, BMP7, and EVI1) were up-regulated in advanced-stage ovarian cancers and, conversely, genes that enhance TGF-β signaling (PCAF, TFE3, TGFBRII, and SMAD4) were down-regulated compared with the normal samples. The microarray data for DACH1 and EVI1 were validated using quantitative real-time PCR on 22 microdissected ovarian cancer specimens. The EVI1 gene locus was amplified in 43% of the tumors, and there was a significant correlation (P = 0.029) between gene copy number and EVI1 gene expression. No amplification at the DACH1 locus was found in any of the samples. DACH1 and EVI1 inhibited TGF-β signaling in immortalized normal ovarian epithelial cells, and a dominant-negative DACH1, DACH1-ΔDS, partially restored signaling in an ovarian cancer cell line resistant to TGF-β. These results suggest that altered expression of these genes is responsible for disrupted TGF-β signaling in ovarian cancer and they may be useful as new and novel therapeutic targets for ovarian cancer. (Cancer Res 2006; 66(17): 8404-12)</jats:p>

収録刊行物

  • Cancer Research

    Cancer Research 66 (17), 8404-8412, 2006-09-01

    American Association for Cancer Research (AACR)

被引用文献 (4)*注記

もっと見る

キーワード

詳細情報 詳細情報について

問題の指摘

ページトップへ