Development of a Compact Wireless Laplacian Electrode Module for Electromyograms and Its Human Interface Applications

  • Yutaka Fukuoka
    Department of Electrical Engineering, Kogakuin University, Tokyo 163-8677, Japan
  • Kenji Miyazawa
    Master's Program in Electronic and Computer Engineering, Tokyo Denki University, Saitama 350-0394, Japan
  • Hiroki Mori
    Department of Electrical and Electronic Engineering, Utsunomiya University, Tochigi 321-8585, Japan
  • Manabi Miyagi
    Research and Support Center on Higher Education for the Hearing Impaired and Visually Impaired, Tsukuba University of Technology, Ibaraki 305-8521, Japan
  • Masafumi Nishida
    Department of Information Systems Design, Doshisha University, Kyoto 610-0321, Japan
  • Yasuo Horiuchi
    Graduate School of Science and Technology, Chiba University, Chiba 263-8522, Japan
  • Akira Ichikawa
    Graduate School of Science and Technology, Chiba University, Chiba 263-8522, Japan
  • Hiroshi Hoshino
    School of Science and Engineering, Tokyo Denki University, Saitama 350-0394, Japan
  • Makoto Noshiro
    Department of Clinical Engineering, School of Allied Health Sciences, Kitasato University, Kanagawa 228-8555, Japan
  • Akinori Ueno
    Department of Electrical and Electronic Engineering, Tokyo Denki University, Tokyo 120-8551, Japan

Abstract

<jats:p>In this study, we developed a compact wireless Laplacian electrode module for electromyograms (EMGs). One of the advantages of the Laplacian electrode configuration is that EMGs obtained with it are expected to be sensitive to the firing of the muscle directly beneath the measurement site. The performance of the developed electrode module was investigated in two human interface applications: character-input interface and detection of finger movement during finger Braille typing. In the former application, the electrode module was combined with an EMG-mouse click converter circuit. In the latter, four electrode modules were used for detection of finger movements during finger Braille typing. Investigation on the character-input interface indicated that characters could be input stably by contraction of (a) the masseter, (b) trapezius, (c) anterior tibialis and (d) flexor carpi ulnaris muscles. This wide applicability is desirable when the interface is applied to persons with physical disabilities because the disability differs one to another. The investigation also demonstrated that the electrode module can work properly without any skin preparation. Finger movement detection experiments showed that each finger movement was more clearly detectable when comparing to EMGs recorded with conventional electrodes, suggesting that the Laplacian electrode module is more suitable for detecting the timing of finger movement during typing. This could be because the Laplacian configuration enables us to record EMGs just beneath the electrode. These results demonstrate the advantages of the Laplacian electrode module.</jats:p>

Journal

  • Sensors

    Sensors 13 (2), 2368-2383, 2013-02-08

    MDPI AG

Citations (1)*help

See more

Details 詳細情報について

Report a problem

Back to top