- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Polarized pairs, log minimal models, and Zariski decompositions
Search this article
Description
<jats:title>Abstract</jats:title><jats:p>We continue our study of the relation between log minimal models and various types of Zariski decompositions. Let (<jats:italic>X,B</jats:italic>) be a projective log canonical pair. We will show that (<jats:italic>X,B</jats:italic>) has a log minimal model if either <jats:italic>K<jats:sub>X</jats:sub></jats:italic> + <jats:italic>B</jats:italic> birationally has a Nakayama–Zariski decomposition with nef positive part, or if <jats:italic>K<jats:sub>X</jats:sub></jats:italic> +<jats:italic>B</jats:italic> is big and birationally has a Fujita–Zariski or Cutkosky–Kawamata–Moriwaki–Zariski decomposition. Along the way we introduce polarized pairs (<jats:italic>X,B</jats:italic> +<jats:italic>P</jats:italic>), where (<jats:italic>X,B</jats:italic>) is a usual projective pair and where <jats:italic>P</jats:italic> is nef, and we study the birational geometry of such pairs.</jats:p>
Journal
-
- Nagoya Mathematical Journal
-
Nagoya Mathematical Journal 215 203-224, 2014-09
Cambridge University Press (CUP)
- Tweet
Details 詳細情報について
-
- CRID
- 1360574095734057088
-
- ISSN
- 21526842
- 00277630
-
- Data Source
-
- Crossref