Effective Radiative forcing from emissions of reactive gases and aerosols – a multimodel comparison

DOI 被引用文献1件 オープンアクセス

説明

<jats:p>Abstract. This paper quantifies the effective radiative forcing from CMIP6 models of the present-day anthropogenic emissions of NOx, CO, VOCs, SO2, NH3, black carbon and primary organic carbon. Effective radiative forcing from pre-industrial to present-day changes in the concentrations of methane, N2O and halocarbons are quantified and attributed to their anthropogenic emissions. Emissions of reactive species can cause multiple changes in the composition of radiatively active species: tropospheric ozone, stratospheric ozone, secondary inorganic and organic aerosol and methane. We therefore break down the ERFs from each emitted species into the contributions from the composition changes. The 1850 to 2014 mean ERFs are 1.1 ± 0.07 W m−2 for sulfate, −0.24 ± 0.01 W m−2 for organic carbon (OC), and 0.15 ± 0.04 W m−2 for black carbon (BC), and for the aerosols combined it is −0.95 ± 0.03 W m−2. The means for the reactive gases are 0.69 ± 0.04 W m−2 for methane (CH4), 0.06 ± 0.04 W m−2 for NOx, −0.09 ± 0.03 W m−2 for volatile organic carbons (VOC), 0.16 ± 0.03 W m−2 for ozone (O3), 0.27 W m−2 for nitrous oxide (N2O) and −0.02 ± 0.06 W m−2 for hydrocarbon (HC). Differences in ERFs calculated for the different models reflect differences in the complexity of their aerosol and chemistry schemes, especially in the case of methane where tropospheric chemistry captures increased forcing from ozone production. </jats:p>

被引用文献 (1)*注記

もっと見る

関連論文

もっと見る

詳細情報 詳細情報について

  • CRID
    1360574096533631232
  • DOI
    10.5194/acp-2019-1205
  • 資料種別
    preprint
  • データソース種別
    • Crossref
    • OpenAIRE

問題の指摘

ページトップへ