- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Accelerating phase-field-based microstructure evolution predictions via surrogate models trained by machine learning methods
Description
<jats:title>Abstract</jats:title><jats:p>The phase-field method is a powerful and versatile computational approach for modeling the evolution of microstructures and associated properties for a wide variety of physical, chemical, and biological systems. However, existing high-fidelity phase-field models are inherently computationally expensive, requiring high-performance computing resources and sophisticated numerical integration schemes to achieve a useful degree of accuracy. In this paper, we present a computationally inexpensive, accurate, data-driven surrogate model that directly learns the microstructural evolution of targeted systems by combining phase-field and history-dependent machine-learning techniques. We integrate a statistically representative, low-dimensional description of the microstructure, obtained directly from phase-field simulations, with either a time-series multivariate adaptive regression splines autoregressive algorithm or a long short-term memory neural network. The neural-network-trained surrogate model shows the best performance and accurately predicts the nonlinear microstructure evolution of a two-phase mixture during spinodal decomposition in seconds, without the need for “on-the-fly” solutions of the phase-field equations of motion. We also show that the predictions from our machine-learned surrogate model can be fed directly as an input into a classical high-fidelity phase-field model in order to accelerate the high-fidelity phase-field simulations by leaping in time. Such machine-learned phase-field framework opens a promising path forward to use accelerated phase-field simulations for discovering, understanding, and predicting processing–microstructure–performance relationships.</jats:p>
Journal
-
- npj Computational Materials
-
npj Computational Materials 7 (1), 2021-01-04
Springer Science and Business Media LLC
- Tweet
Details 詳細情報について
-
- CRID
- 1360576120776814592
-
- ISSN
- 20573960
-
- Data Source
-
- Crossref