Methotrexate-Loaded Solid Lipid Nanoparticles: Protein Functionalization to Improve Brain Biodistribution
-
- Elisabetta Muntoni
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
-
- Katia Martina
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
-
- Elisabetta Marini
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
-
- Marta Giorgis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
-
- Loretta Lazzarato
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
-
- Iris Chiara Salaroglio
- Dipartimento di Oncologia, Università degli Studi di Torino, 10043 Orbassano, Italy
-
- Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, 10043 Orbassano, Italy
-
- Michele Lanotte
- Dipartimento di Neuroscienze, Università degli Studi di Torino, 10126 Torino, Italy
-
- Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
説明
<jats:p>Glioblastoma is the most common and invasive primary tumor of the central nervous system and normally has a negative prognosis. Biodistribution in healthy animal models is an important preliminary study aimed at investigating the efficacy of chemotherapy, as it is mainly addressed towards residual cells after surgery in a region with an intact blood–brain barrier. Nanoparticles have emerged as versatile vectors that can overcome the blood–brain barrier. In this experimental work, solid lipid nanoparticles, prepared using fatty acid coacervation, have been loaded with an active lipophilic ester of cytotoxic drug methotrexate, and functionalized with either transferrin or insulin, two proteins whose receptors are abundantly expressed on the blood–brain barrier. Functionalization has been achieved by grafting a maleimide moiety onto the nanoparticle’s surface and exploiting its reactivity towards thiolated proteins. The nanoparticles have been tested in vitro on a blood–brain barrier cellular model and in vivo for biodistribution in Wistar rats. Drug metabolites, in particular 7-hydroxymethotrexate, have also been investigated in the animal model. The data obtained indicate that the functionalization of the nanoparticles improved their ability to overcome the blood–brain barrier when a PEG spacer between the proteins and the nanoparticle’s surface was used. This is probably because this method provided improved ligand–receptor interactions and selectivity for the target tissue.</jats:p>
収録刊行物
-
- Pharmaceutics
-
Pharmaceutics 11 (2), 65-, 2019-02-02
MDPI AG