Liquid metal droplet shuttling in a microchannel toward a single line multiplexer with multiple sensors

抄録

<jats:title>Abstract</jats:title><jats:p>Multiple sensors and actuators integrated in a small space, especially an elongated thin structure, require equivalent number of signal lines between microdevices, but there is limited space for signal wires. Thus, we propose a mechanism using a single microchannel where a liquid metal droplet moves and shuttles. A shuttling droplet switches multiple terminals of signal lines along a microchannel based on a traditional switching mechanism using a liquid metal droplet. Electrically conductive gallium alloy liquid metals (Galinstan) can flow in a microchannel due to their fluidity. The terminals consist of opposing electrode pairs in a microchannel. A change in a variable impedance connected to a terminal as a pseudo sensor can be read when a droplet flows in and connects electrode pairs. This paper presents switching and addressing objective terminals of chromium electrodes by a shuttling conductive droplet (500 µm in diameter and 10 mm long) in a microchannel (500 µm in diameter and 100 mm long). A demonstrated simple mechanism enables communication between multiple microdevices along a microchannel. We anticipate wide application of proposed mechanism toward a multiplexer, especially in microfluidic devices because of the advantages of utilizing microchannels as common microstructures for both microdevices and signal lines.</jats:p>

収録刊行物

  • Scientific Reports

    Scientific Reports 12 (1), 2022-03-16

    Springer Science and Business Media LLC

被引用文献 (1)*注記

もっと見る

参考文献 (25)*注記

もっと見る

関連プロジェクト

もっと見る

キーワード

詳細情報 詳細情報について

問題の指摘

ページトップへ