- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Review: Rice Blast Disease
Description
<jats:p>Rice blast caused by Magnaporthe grisea is the major damaging disease in nearly all rice growing nations. Economically relevance with 60 percent of total population of world depending on rice as the main source of calories, may have destructive effects of the disease, however, this pathogen has developed into a pioneering model system for researching host-pathogen interactions. The disease outbreak depends on the weather and climatic conditions of the various regions. The disease's occurrence and symptoms vary from country to country. Susceptible cultivars cause huge rice production loss in yield. The principal cause of resistance breakdown in rice against rice blast disease is pathogenic variability. During sexual hybridization, pathogenic changes may provide evidence of pathogenic variation found at the asexual stage of the fungus. The virulent pathotypes cause severe disease incidence. Only through pathogenicity research the pathotypes can be determined using a collection of different rice varieties that are usually different carrying various resistance genes. Rice breeders now have a number of resistant genes however, most of the breeding programs emphasized upon monogenic resistance. Genetic heterogeneity of M. grisea should be taken into account when screening blast resistant rice genotypes through morphological analysis, pathogenicity and molecular characterization. Knowledge on the virulence of the rice blast and host resistant is essential for managing the disease. Cultivation of resistant varieties with chemical control is highly effective against blast pathogens.</jats:p>
Journal
-
- Annual Research & Review in Biology
-
Annual Research & Review in Biology 50-64, 2020-03-19
Sciencedomain International
- Tweet
Details 詳細情報について
-
- CRID
- 1360579820091457536
-
- ISSN
- 2347565X
-
- Data Source
-
- Crossref