Fuss-Catalan numbers in noncommutative probability

  • Wojciech Mlotkowski
    Mathematical Institute University of Wroclaw Pl. Grunwaldzki 2/4 50-384 Wroclaw Poland

この論文をさがす

説明

<jats:p> We prove that if <jats:inline-formula> <jats:tex-math>p,r\in{R}, p\ge1</jats:tex-math> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math>0le rle p</jats:tex-math> </jats:inline-formula> then the Fuss-Catalan sequence <jats:inline-formula> <jats:tex-math>\binom{mp+r}m\frac{r}{mp+r}</jats:tex-math> </jats:inline-formula> is positive definite. We study the family of the corresponding probability measures <jats:inline-formula> <jats:tex-math>\mu(p,r)</jats:tex-math> </jats:inline-formula> on <jats:inline-formula> <jats:tex-math>{R}</jats:tex-math> </jats:inline-formula> from the point of view of noncommutative probability. For example, we prove that if <jats:inline-formula> <jats:tex-math>0le 2rle p</jats:tex-math> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math>r+1le p</jats:tex-math> </jats:inline-formula> then <jats:inline-formula> <jats:tex-math>\mu(p,r)</jats:tex-math> </jats:inline-formula> is <jats:inline-formula> <jats:tex-math>\boxplus</jats:tex-math> </jats:inline-formula> -infinitely divisible. As a by-product, we show that the sequence <jats:inline-formula> <jats:tex-math>\frac{m^m}{m!}</jats:tex-math> </jats:inline-formula> is positive definite and the corresponding probability measure is <jats:inline-formula> <jats:tex-math>\boxtimes</jats:tex-math> </jats:inline-formula> -infinitely divisible. </jats:p>

収録刊行物

  • Documenta Mathematica

    Documenta Mathematica 15 939-955, 2010

    European Mathematical Society - EMS - Publishing House GmbH

被引用文献 (2)*注記

もっと見る

詳細情報 詳細情報について

  • CRID
    1360579820397522304
  • DOI
    10.4171/dm/318
  • ISSN
    14310643
    14310635
  • データソース種別
    • Crossref

問題の指摘

ページトップへ